During cell-free volume replacement, hyperoxic ventilation with Fio2 0.6 generates a readily usable plasmatic oxygen reserve and thereby increases the tolerance toward acute normovolemic anemia.
In this present experimental study the infusion of a PEG-modified LEH provided adequate tissue oxygenation, hemodynamic stability, and a prolongation of survival time after critical anemia. However, these effects were sustained for only a short period of time.
Background: During acellular replacement of an acute blood loss, hyperoxic ventilation (HV) increases the amount of O2 physically dissolved in the plasma and thereby improves O2 supply to the tissues. While this effect could be demonstrated for HV with inspiratory O2 fraction (FiO2) 0.6, it was unclear whether HV with pure oxygen (FiO2 1.0) would have an additional effect on the physiological limit of acute normovolemic anemia. Methods: Seven anesthetized domestic pigs were ventilated with FiO2 1.0 and subjected to an isovolemic hemodilution protocol. Blood was drawn and replaced by a 6% hydroxyethyl starch (HES) solution (130/0.4) until a sudden decrease of total body O2 consumption (VO2) indicated the onset of O2 supply dependency (primary endpoint). The corresponding hemoglobin (Hb) concentration was defined as ‘critical Hb' (Hbcrit). Secondary endpoints were parameters of myocardial function, central hemodynamics, O2 transport and tissue oxygenation. Results: HV with FiO2 1.0 enabled a large blood-for-HES exchange (156 ± 28% of the circulating blood volume) until Hbcrit was met at 1.3 ± 0.3 g/dl. After termination of the hemodilution protocol, the contribution of O2 physically dissolved in the plasma to O2 delivery and VO2 had significantly increased from 11.7 ± 2 to 44.2 ± 9.7% and from 29.1 ± 4.2 to 66.2 ± 11.7%, respectively. However, at Hbcrit, cardiovascular performance was found to have severely deteriorated. Conclusion: HV with FiO2 1.0 maintains O2 supply to tissues during extensive blood-for-HES exchange. In acute situations, where profound anemia must be tolerated (e.g. bridging an acute blood loss until red blood cells become available for transfusion), O2 physically dissolved in the plasma becomes an essential source of oxygen. However, compromised cardiovascular performance might require additional treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.