The monarch butterfly is one of the most easily recognized and frequently studied insects in the world, and has recently come into the spotlight of public attention and conservation concern because of declining numbers of individuals associated with both the eastern and western migrations. Historically, the larger eastern migration has received the most scientific attention, but this has been changing in recent years, and here we report the largest-ever attempt to map and characterize non-overwintering habitat for the western monarch butterfly. Across the environmentally and topographically complex western landscape, we include 8,427 observations of adults and juvenile monarchs, as well as 20,696 records from 13 milkweed host plant species. We find high heterogeneity of suitable habitats across the geographic range, with extensive concentrations in the California floristic province in particular. We also find habitat suitability for the butterfly to be structured primarily by host plant habitat associations, which are in turn structured by a diverse suite of climatic variables. These results add to our knowledge of range and occupancy determinants for migratory species and provide a tool that can be used by conservation biologists and researchers interested in interactions among climate, hosts and host-specific animals, and by managers for prioritizing future conservation actions at regional to watershed scales.
Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water‐related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream‐gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven‐day low flow, January–March maximum temperature trends, and the size of the basin (19–7,260 km2), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October–December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS‐estimated regression models for predicting streamflow trends. Results indicate that transitional rain–snow surface water‐dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming. Patrones espaciales de las tendencias de los caudales de marzo y septiembre en el Pacífico Noroccidental. Los caudales (streamflows) de verano son recursos hídricos vitales para el abastecimiento de agua municipal y domestico así como para el riego agrícola, el hábitat de los salmónidos, la recreación, y para varios servicios de los ecosistemas en el Pacífico Noroccidental (Pacific Nortwest‐PNW) de los Estados Unidos. Este estudio identifica tendencias negativas considerables en los caudales absolutos de septiembre en la mayoría de las 68 estaciones de medición situadas en ríos y arroyos no regulares del PNW entre 1958 y 2008. La proporción del caudal de marzo con respecto al caudal anual aumenta en la mayoría de las estaciones situadas a más de 1000 metros de altitud, que tienen un índice de caudal base (base flow index‐BFI) de menos de 50, pero...
The classic image of Upper Palaeolithic hunter-gatherers in Europe envisages them hunting large mammals in largely treeless landscapes. That is partly due to the nature of the surviving archaeological evidence, and the poor preservation of plant remains at such ancient sites. As this study illustrates, however, the potential of Upper Palaeolithic sites to yield macrofossil remains of plants gathered and processed by human groups has been underestimated. Large scale flotation of charred deposits from hearths such as that reported here at Dolní Vӗstonice II not only provides insight into the variety of flora that may have been locally available, but also suggests that some of it was being processed and consumed as food. The ability to exploit plant foods may have been a vital component in the successful colonisation of these cold European habitats.
Semi-distributed hydrological models are often used for streamflow forecasting, hydrological climate change impact assessments, and other applications. In such models, basins are broken up into hydrologic response units (HRUs), which are assumed to have a relatively homogenous response to precipitation. HRUs are delineated in a variety of ways, and the procedure used may impact model performance. HRU delineation procedures have been researched, but it is still not clear how important these subdivision schemes are or which delineation methods are most effective. To start addressing this knowledge gap, this project investigated whether or not HRU size has a significant effect on streamflow simulation at the mouth of a watershed.To test this, 30 gaged, relatively unimpaired western U.S. basins were each modeled with 6 HRU sets of different sizes using the Precipitation Runoff Modeling System (PRMS). To isolate size as a variable, HRUs were delineated using stream catchments.For each basin, streams were defined with 6 different threshold levels, producing HRUs of differing sizes. Nineteen model parameters were derived for each HRU using nationally consistent GIS datasets, and all other model parameters were left at default values. Climate inputs were derived from a national 4-km 2 gridded daily climate dataset.After calibration, 4 goodness-of-fit metrics were calculated for daily streamflow for each HRU set. Uncalibrated model performance was generally poor for a variety of reasons, but comparison of the models was still informative. Results for the 30 basins across the 6 HRU size classes showed that HRU size did not significantly impact model performance across all basins. However, in basins that had less total precipitation and ii higher elevation, sensitivity of model performance to HRU subdivision levels was slightly greater, though not significantly so. Findings indicate that, in most basins, little subdivision may be required for good model performance, allowing for desirable simplicity and fewer degrees of freedom without sacrificing runoff simulation accuracy.iii
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. AbstractAs part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey's Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees north latitude in Willapa Bay. We calibrated model parameters using historical climate grid data downscaled to onesixteenth of a degree by the Climate Impacts Group, and historical runoff from sub-watersheds or neighboring watersheds. Nash Sutcliffe efficiency values for daily flows in calibration sub-watersheds ranged from 0.71 to 0.89. After calibration, we forced the PRMS models with four North American Regional Climate Change Assessment Program climate models: Canadian Regional Climate Model-(National Center for Atmospheric Research) Community Climate System Model version 3, Canadian Regional Climate Model-Canadian Global Climate Model version 3, Hadley Regional Model version 3-Hadley Centre Climate Model version 3, and Regional Climate Model-Canadian Global Climate Model version 3. These are global climate models (GCMs) downscaled with regional climate models that are embedded within the GCMs, and all use the A2 carbon emission scenario developed by the Intergovernmental Panel on Climate Change. With these climate-forcing outputs, we derived the mean change in flow from the period encompassing the 1980s to the period encompassing the 2050s . Specifically, we calculated percent change in mean monthly flow rate, coefficient of variation, top 5 percent of flow, and 7-day low flow. The trends with the most agreement among clim...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.