Rainfall thresholds represent the main tool for the Italian Civil Protection System for early warning of the threat of landslides. However, it is well-known that soil moisture conditions at the onset of a storm event also play a critical role in triggering slope failures, especially in the case of shallow landslides. This study attempts to define soil moisture (estimated by using a soil water balance model) and rainfall thresholds that can be employed for hydrogeological risk prevention by the Civil Protection Decentrate Functional Centre (CFD) located in the Umbria Region (central Italy). Two different analyses were carried out by determining rainfall and soil moisture conditions prior to widespread landslide events that occurred in the Umbria Region and that are reported in the AVI (Italian Vulnerable Areas) inventory for the period 1991-2001. Specifically, a "local" analysis that considered the major landslide events of the AVI inventory and an "areal" analysis subdividing the Umbria Region in ten sub-areas were carried out. Comparison with rainfall thresholds used by the Umbria Region CFD was also carried out to evaluate the reliability of the current procedures employed for landslide warning. The main result of the analysis is the quantification of the decreasing linear trend between the maximum cumulated rainfall values over 24, 36 and 48h and the soil moisture conditions prior to landslide events. This trend provides a guideline to dynamically adjust the operational rainfall thresholds used for warning. Moreover, the areal analysis, which was aimed to test the operational use of the combined soil moisture-rainfall thresholds showed, particularly for low values of rainfall, the key role of soil moisture conditions for the triggering of landslides. On the basis of these results, the Umbria Region CFD is implementing a procedure aimed to the near real-time estimation of soil moisture conditions based on the soil water balance model developed ad hoc for the region. In fact, it was evident that a better assessment of the initial soil moisture conditions would support and improve the hydrogeological risk assessment.
In recent years, awareness of a need for more effective disaster data collection, storage, and sharing of analyses has developed in many parts of the world. In line with this advance, Italian local authorities have expressed the need for enhanced methods and procedures for post-event damage assessment in order to obtain data that can serve numerous purposes: to create a reliable and consistent database on the basis of which damage models can be defined or validated; and to supply a comprehensive scenario of flooding impacts according to which priorities can be identified during the emergency and recovery phase, and the compensation due to citizens from insurers or local authorities can be established. This paper studies this context, and describes ongoing activities in the Umbria and Sicily regions of Italy intended to identifying new tools and procedures for flood damage data surveys and storage in the aftermath of floods. In the first part of the paper, the current procedures for data gathering in Italy are analysed. The analysis shows that the available knowledge does not enable the definition or validation of damage curves, as information is poor, fragmented, and inconsistent. A new procedure for data collection and storage is therefore proposed. The entire analysis was carried out at a local level for the residential and commercial sectors only. The objective of the next steps for the research in the short term will be (i) to extend the procedure to other types of damage, and (ii) to make the procedure operational with the Italian Civil Protection system. The long-term aim is to develop specific depth-damage curves for Italian contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.