This article reports results of a theoretical analysis as well as a numerical study investigating the occurrence of flow instabilities in porous materials applied as volumetric solar receivers. After a short introduction into the technology of volumetric solar receivers, which are aimed to supply heat for a steam turbine process to generate electricity, the general requirements of materials applied as solar volumetric receivers are reviewed. Finally, the main methods and results of the two studies are reported. In the theoretical analysis it is shown that heat conductivity as well as permeability properties of the porous materials have significant influence on the probability of the occurrence of flow instabilities. The numerical study has been performed to investigate the occurrence of unstable flow in heated ceramic foam materials. In the simulations a constant heat flow of radiation, that is absorbed in a defined volume, and constant permeability coefficients are assumed. Boundary conditions similar to those of the 10 MW Solucar Solar project have been chosen. In a three dimensional, heterogeneous two phase heat transfer model it was possible to simulate local overheating of the porous structure. The parameters heat conductivity, turbulent permeability coefficient and radial dispersion coefficient have been varied systematically. Consequently, for a heat flux density of 1 MW/m 2 a parameter chart could be generated, showing the possible occurrence of ''unstable'' or ''stable'' thermal and fluid mechanical behaviour. These numerical results are beneficial for the design of optimized materials for volumetric receivers.
The pressure drop of technical devices is a crucial property for their design and operation. In this paper, we show how the results of lattice Boltzmann simulations can be used in science and engineering to improve the physical understanding of the pressure drop and the flow inhomogeneities in porous media, especially in sphere-packed fixed-bed reactors with low aspect ratios. Commonly used pressure drop correlations are based on simplified assumptions such as the capillary or tortuosity model, which do not reflect all hydrodynamic effects. Consequently, empirical correlations for certain classes of media have been introduced in the past to bridge the gap between the models and the experimental findings. As is shown in this paper by the detailed analysis of the velocity field in the void space of packed beds, the pressure drop is due to more complex hydrodynamics than considered in the above-mentioned models. With the help of lattice Boltzmann simulations, we were able to analyse the different contributions to the total dissipation, namely shear and deformation of the fluid, for different geometries over a wide range of Reynolds numbers. We further show that the actual length of the flow paths changes considerably with the radial and circumferential position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.