In aprotic media the electrochemical reduction of dioxygen yields superoxide ion (O2-), which is an effective Brønsted base, nucleophile, one-electron reductant, and one-electron oxidant of reduced transition metal ions. With electrophilic substrates (organic halides and carbonyl carbons) O2- displaces a leaving group to form a peroxy radical (ROO.) in the primary process. Superoxide ion oxidizes the activated hydrogen atoms of ascorbic acid, catechols, hydrophenazines and hydroflavins. Combination of O2- with 1,2-diphenylhydrazine yields the anion radical of azobenzene, which reacts with O2 to give azobenzene and O2- (an example of O2--induced autoxidation). With phenylhydrazine, O2- produces phenyl radicals. The in situ formation of HO2. (O2- plus a proton source) results in H-atom abstraction from allylic and other groups with weak heteroatom--H bonds (binding energy (b.e.) less than 335 kJ). This is a competitive process with the facile second-order disproportionation of HO2. to H2O2 and O2 (kbi approximately equal to 10(4) mol-1 s-1 in Me2SO). Addition of [FeII(MeCN)4] (ClO4)2 to solutions of hydrogen peroxide in dry acetonitrile catalyses a rapid disproportionation of H2O2 via the initial formation of an adduct [FeII(H2O2)2+----Fe(O)(H2O)2+], which oxidizes a second H2O2 to oxygen. In the presence of organic substrates such as 1,4-cyclohexadiene, 1,2-diphenylhydrazine, catechols and thiols the FeII-H2O2/MeCN system yields dehydrogenated products; with alcohols, aldehydes, methylstyrene, thioethers, sulphoxides, and phosphines, the FeII(H2O2)2+ adduct promotes their monoxygenation. The product from the FeO2+-H2O2 reaction, [FeII(H2O2)22+], exhibits chemistry that is closely similar to that for singlet oxygen (1O2), which has been confirmed by the stoichiometric dioxygenation of diphenylisobenzofuran, 9,10-diphenylanthracene, rubrene and electron-rich unsaturated carbon-carbon bonds (Ph2C = CPh2, PhC = CPh and cis-PhCH = CHPh). In dry ligand-free acetonitrile (MeCN), anhydrous ferric chloride (FeIIICl3) activates hydrogen peroxide for the efficient epoxidation of alkenes. The FeIIICl3 further catalyses the dimerization of the resulting epoxides to dioxanes. These observations indicate that strong Lewis acids that are coordinatively unsaturated, [FeII(MeCN)4]2+ and [FeIIICl3], activate H2O2 to form an effective oxygenation and dehydrogenation agent.(ABSTRACT TRUNCATED AT 400 WORDS)