We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d 5/2 core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2 × 2), p(2 × 1), (2 × 2)-3O and (1 × 1)-O oxygen structures we found Ru 3d 5/2 core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.
A detailed low‐energy electron diffraction (LEED)‐IV analysis, complemented by scanning tunneling microscopy (STM) observations, was carried out for the apparent (2 × 2) structure of the oxygen‐covered Ru(001) surface at a coverage of 0.75 ML. We present STM images of incomplete layers which allow one to define the symmetry of the ordered layer, in particular of the novel high density p(2 × 2)‐3O phase. In the LEED‐IV analysis we have tested 28 model structures; the results can be used for conclusions about the discrimination of this type of geometry determination. Our quantitative LEED analysis in connection with the STM results corroborates the model proposed before and shows that all of the oxygen atoms sit in the hcp sites with an averaged vertical distance to the outermost Ru layer of d⊥Ru–O = 1.22 Å. This value falls into the general trend of increasing d⊥Ru–O with oxygen coverage observed for the other ordered structures of adsorbed oxygen on Ru and is also predicted by recent total energy calculations. The O–Ru bonding distance of about 2.0 Å is essentially unchanged compared to the other structures. Considerable lateral and vertical displacements of both the O and the Ru atoms are found, with the O atoms being slightly displaced towards the fcc hollow site located in the center of three oxygen atoms. The two uppermost substrate layers are buckled; in the first layer three out of four Ru atoms of the (2 × 2) unit cell are shifted away laterally from their bulk positions. These shifts, globally as well as locally, can be understood in terms of local electron density changes induced by the adsorbed oxygen atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.