High-voltage gas circuit breakers, which play an important role in the operation and protection of the power grid, function by drawing an arc between two contacts and then extinguishing it by cooling it using a transonic gas flow. Improving the design of circuit breakers requires an understanding of the physical processes in the interruption of the arc, particularly during the zero crossing of the alternating current (the point in time when the arc can be interrupted). Most diagnostic techniques currently available focus on measurement of current, voltage, and gas pressure at defined locations. However, these integral properties do not give sufficient insight into the arc physics. To understand the current interruption process, spatially resolved information about the density, temperature, and conductivity of the arc and surrounding gas flow is needed. Owing to the three-dimensional, unstable nature of the arc in a circuit breaker, especially near current zero, a spatially resolved, tomographic diagnostic technique is required that is capable of freezing the rapid, transient behavior and that is insensitive to the vibrations and electromagnetic interference inherent in the interruption of short-circuit current arcs. Here a new measurement system, based on background-oriented schlieren (BOS) imaging, is presented and assessed. BOS imaging using four beams consisting of white light sources, a background pattern, imaging optics, and a camera permits measurement of the line-of-sight integrated refractive index. Tomographic reconstruction is used to determine the three-dimensional, spatially resolved index of refraction distribution that in turn is used to calculate the density. The quantitative accuracy of a single beam of the BOS setup is verified by using a calibration lens with a known focal length. The ability of the tomographic reconstruction to detect asymmetric features of the arc and surrounding gas flow is assessed semiquantitatively using a nozzle that generates two gas jets, as described in [Exp. Fluids43, 241 (2007)EXFLDU0723-486410.1007/s00348-007-0331-1]. Experiments using a simple model of a circuit breaker, which provides optical access to an ∼1 kA arc that burns between two contacts and is blown through a nozzle system by synthetic air from a high pressure reservoir, are also described. The density in the decaying arc and surrounding gas flow is reconstructed, and the limitations of the technique, which are related to the temporal and spatial resolution, are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.