This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boundary layer control and delay of flow separation. A less recognized effect resulting from the SJAs is a momentum exchange that occurs with the flow, leading to a rearrangement of the streamlines around the airfoil modifying the aerodynamic loads. Discussions pertinent to the use of SJAs for flow and aeroelastic control and how these devices can be exploited for flutter suppression and for aerodynamic performances improvement are presented and conclusions are outlined.
Active flow control devices such as zero-net-mass-flux actuators have broad aeronautical applications. Among them, low power and lightweight Synthetic Jet Actuators (SJAs) can be used to improve the performance of flight vehicles, expand their flight envelope and prevent catastrophic failure by flutter instability. Numerical and experimental
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.