BackgroundTreatments for childhood obesity are critically needed because of the risk of developing co-morbidities, although the interventions are frequently time-consuming, frustrating, difficult, and expensive.Patients and methodsWe conducted a longitudinal, randomised, clinical study, based on a per protocol analysis, on 133 obese children and adolescents (n = 69 males and 64 females; median age, 11.3 years) with family history of obesity and type 2 diabetes mellitus (T2DM). The patients were divided into three arms: Arm A (n = 53 patients), Arm B (n = 45 patients), and Arm C (n = 35 patients) patients were treated with a low-glycaemic-index (LGI) diet and Policaptil Gel Retard®, only a LGI diet, or only an energy-restricted diet (ERD), respectively. The homeostasis model assessment of insulin resistance (HOMA-IR) and the Matsuda, insulinogenic and disposition indexes were calculated at T0 and after 1 year (T1).ResultsAt T1, the BMI-SD scores were significantly reduced from 2.32 to 1.80 (p < 0.0001) in Arm A and from 2.23 to 1.99 (p < 0.05) in Arm B. Acanthosis nigricans was significantly reduced in Arm A (13.2% to 5.6%; p < 0.05), and glycosylated-haemoglobin levels were significantly reduced in Arms A (p < 0.005). The percentage of glucose-metabolism abnormalities was reduced, although not significantly. However, the HOMA-IR index was significantly reduced in Arms A (p < 0.0001) and B (p < 0.05), with Arm A showing a significant reduction in the insulinogenic index (p < 0.05). Finally, the disposition index was significantly improved in Arms A (p < 0.0001) and B (p < 0.05).ConclusionsA LGI diet, particularly associated with the use of Policaptil Gel Retard®, may reduce weight gain and ameliorate the metabolic syndrome and insulin-resistance parameters in obese children and adolescents with family history of obesity and T2DM.
Objective. This paper aims to assess 25(OH)D levels in Italian children and adolescents identifying risk factors for 25(OH)D deficiency and to evaluate whether a normal 25(OH)D value can be restored in 25(OH)D-deficient patients. Methods. We evaluated 25(OH)D levels in 679 Italian children and adolescents (≤10, 11–20, 21–30, and >30 ng/mL were defined as severe deficiency, deficiency, insufficiency, and sufficiency, resp.). Of these, 365 25(OH)D-deficient were followed up for 1 year; 205 were treated with cholecalciferol (Arm A: 400 I.U.) and 160 by improving the environmental variables influencing 25(OH)D levels (Arm B). Results. At cross-sectional evaluation, 11.3% showed sufficiency, 30.0% insufficiency, and 58.7% 25(OH)D deficiency. Mean 25(OH)D was 19.08 ± 8.44 ng/mL. At the enrollment time (T
0), no difference was found between Arms A and B with respect to distribution and 25(OH)D levels. At end time (T
1) 26.0% (29.7% in Arm A versus 20.6% in Arm B) showed sufficiency, 38.4% (42.0% versus 34.4%) insufficiency, and 35.6% (28.3% versus 45.0%) 25(OH)D deficiency. Mean 25(OH)D level was 23.71 ± 6.83 ng/mL. Conclusions. Neither changes of lifestyle nor 400 I.U. cholecalciferol supplementation alone appears to be sufficient to restore adequate 25(OH)D levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.