The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.
Methylation of amines and ketones with palladacycle precatalyst has been performed using methanol as an environmentally benign reagent. Various ketones and amines undergo methylation reaction to yield monomethylated amines or ketones in moderate to good isolated yields. Moreover, this protocol was tested for the chemoselective methylation of 4aminobenzenesulfonamide. The scope of the reaction was further extended to the deuteromethylation of ketones.
Herein we report simple, highly efficient,
and phosphine-free N,C–Ru
and N,N–Ru catalysts for ligand-controlled borrowing-hydrogen
(BH) and interrupted-borrowing-hydrogen (I-BH) methods, respectively.
This protocol has been employed on a variety of ketones using MeOH
as a green, sustainable, and alternative C1 source to form a C–C
bond through the BH and I-BH methods. Reasonably good substrate scope,
functional group tolerance, and good-to-excellent yields at 70 °C
are the added highlights of these methodologies. Controlled experiments
reveal that an in situ formed formaldehyde is one of the crucial elements
in this ligand-controlled selective protocol, which upon reaction
with a ketone generates an enone as an intermediate. This enone in
the presence of the N,C–Ru catalyst and N,N–Ru catalyst
through the BH and I-BH pathways yields methylated ketones and 1,5-diketones,
respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.