We discuss extensions of the Virasoro algebra obtained by generalizing the Sugawara construction to the higher order Casimir invariants of a Lie algebra g. We generalize the GKO coset construction to the dimension-3 operator for g =A N 1 and recover results of Fateev and Zamolodchikov if N = 3. Branching rules and generalizations to all simple, simply-laced g are discussed.
Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants Schoutens, C.J.M.; Bais, F.A.; Bouwknegt, P.; Surridge, M. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. We discuss extensions of the Virasoro algebra obtained by generalizing the Sugawara construction to the higher order Casimir invariants of a Lie algebra g. We generalize the GKO coset construction to the dimension-3 operator for g =A N 1 and recover results of Fateev and Zamolodchikov if N = 3. Branching rules and generalizations to all simple, simply-laced g are discussed.
Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants Schoutens, C.J.M.; Bais, F.A.; Bouwknegt, P.; Surridge, M. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. We discuss extensions of the Virasoro algebra obtained by generalizing the Sugawara construction to the higher order Casimir invariants of a Lie algebra g. We generalize the GKO coset construction to the dimension-3 operator for g =A N 1 and recover results of Fateev and Zamolodchikov if N = 3. Branching rules and generalizations to all simple, simply-laced g are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.