The novel corona virus (COVID-19) is a causative agent for severe acute respiratory syndrome (SARS-CoV-2) and responsible for the current human pandemic situation which has caused global social and economic commotion. The currently available vaccines use whole viruses whereas there is scope for peptide based vaccines. Thus, the global raise in statistics of this infection at an alarming rate evoked us to determine a novel and effective vaccine candidate against SARS-CoV-2. To find the potential vaccine candidate targets, immunoinformatics approaches were used to analyze the mutations in the envelope protein and surface glycoprotein and determine the conserved region; further specific T-cell epitopes
VSLVKPSFY, SLVKPSFYV, RVKNLNSSR, SEETGTLIV, LVKPSFYVY, LTDEMIAQY, YLQPRTFLL, RLFRKSNLK, SPRRARSVA, AEIRASANL, TLLALHRSY, YSRVKNLNS
and
FELLHAPAT
and B-cells epitopes
TLAILTALRLCAYCCN
and
AGTITSGWTFGAGAAL
were identified. The 3 D structure of epitope was predicted, refined and validated. The molecular docking analysis of multi-epitope vaccine candidates with TLR receptors, predicted effective binding. Overall, using bioinformatics approach this multi-epitopic target facilitates the proof of concept for SARS-CoV-2 conserved epitopic vaccine design.
Communicated by Ramaswamy H. Sarma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.