The paper is focused on the processing of aluminum alloy chips using powder metallurgy. Chips obtained from recycled AlSi5Cu2 alloy were ball milled with the addition of silicon carbide powder with an average size of 2µm. Mechanical alloying process was employed to obtain homogeneous composite powder. The effect of processing time (0 -40h) on the homogeneity of the system was evaluated, as well as a detailed study of the microstructure of AlSi5Cu2 aluminum chips and SiC particles during MA was carried out. Addition of silicon carbide (10, 20wt%) to recycled aluminium chips and application of MA lead to fragmentation of the homogeneous composite powder down to particle size of about 3µm and spheroidization. The addition of hard SiC particles caused reinforcement and reduced the milling time. Higher content of silicon carbide and longer processing time allowed to obtain AlSi5Cu2/SiC powders with microhardness ∼500HV 0.025 . The results of MA were investigated with SEM, EDS, LOM, XRD and showed that relatively homogeneous distribution of SiC reinforcements in the matrix as well as grain refinement of aluminum solid solution down to 50nm can be obtained after 40h of processing.Keywords: AlSiCu alloy chips, Recycling, Powder metallurgy, Mechanical alloying, Al-SiC composite powder W artykule przedstawiono metodę otrzymywania proszku kompozytowego na osnowie wiór stopu aluminium AlSi5Cu2 pochodzących z recyklingu z dodatkiem węglika krzemu (SiC-α, 2µm). Określono wpływ czasu mielenia oraz dodatku SiC na mikrostrukturę i właściwości proszku kompozytowego. Dodatek SiC (10, 20%mas) do wiór stopu aluminium i zastosowanie mechanicznej syntezy pozwala na otrzymanie jednorodnego i drobnoziarnistego proszku o wielkości 3µm i kształcie zbliżonym do sferycznego. Dodatek twardych cząstek SiC powoduje umocnienie proszku oraz skrócenie czasu mielenia. Dodatek SiC i zastosowanie 40h mielenia pozwala otrzymać cząstki proszku o mikrotwardości około 500 HV 0,025 .Badania proszku kompozytowego przeprowadzone na mikroskopie optycznym, SEM oraz TEM potwierdziły jednorodne rozmieszczenie cząstek SiC w osnowie oraz zmniejszenie wielkości ziarna do 50nm po 40 godzinach procesu.
The present work investigates the possibility of using powder metallurgy processing for producing a metal matrix composite. Materials were prepared from AlSi5Cu2 chips with reinforcement of 10, 15, 20 wt. % silicon carbide. Aluminum alloy chips were milled with SiC powder in a high-energy ball mill by 40 hours. Mechanical alloying process lead to obtain an uniform distribution of hard SiC particles in the metallic matrix and refine the grain size. The consolidation of composite powders was performed by vacuum hot pressing at 450 • C, under pressure of 600 MPa by 10 min. The results shows that the addition of SiC particles has a substantial influence on the microstructure and mechanical properties of composite powder as well as consolidated material. Hot pressing is an effective consolidation method which leads to obtain dense AlSi5Cu2/SiC composite with homogeneous structure and advanced mechanical properties.
AlSi5Cu2/SiC nanocrystalline composite powder was successfully obtained by mechanical alloying of AlSi5Cu2 chips with reinforcement of 0, 10, 15, 20 wt. % of silicon carbide. X-ray powder diffraction was used to characterize obtained material. Detailed analyses using transmission and scanning electron microscopy have been conducted in order to collaborate the grain size measurement determined from the XRD analyses. Powders produced in a planetary ball mill with milling time: 1, 5, 10, 15, 20 and 40 hours, have shown shape and size evaluation during mechanical alloying process. It can be seen tendency to decrease the size of the grain as the milling time is increased. It is also noted that the grains of composites (AlSi5Cu2/SiC) are smaller than samples prepares without SiC addition. 40 hours of milling lead to formed very small grains of Al phase (20 nm in average) in composite powder.
AlSi5Cu2 alloy matrix composite have been studied by microscopic examination and basic tribological properties was evaluated. Composite material was produced by the mechanical milling and spark plasma sintering technique. After sintering process SiC particles were uniformly distributed in the matrix. The wear and the friction coefficients were determinate as a function of the SiC volume fraction. The addition of SiC wt. % had significant effect on tribological properties of that composites. The increase in reinforcement content improves the wear resistance of obtained materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.