The dispersion of polymer-covered gold nanoparticles in high molecular weight (MW) polymer matrixes is reported. Complete particle dispersion was achieved for PS125-Au in the polystyrene (PS) matrixes studied (up to and including Mn = 80 000 g/mol). PS19-Au, on the other hand, exhibits complete dispersion in a low MW PS matrix (Mn = 2000 g/mol) but only partial dispersion in higher MW matrixes (up to 80 000 g/mol). Similarly, PEO45-Au is fully dispersed in a low MW poly(ethylene oxide) (PEO) matrix (Mn = 1000 g/mol) but only partially in a higher MW PEO matrix (Mn = 15 000 g/mol). Wetting of the polymer-Au brushes by the polymer matrix is associated with dispersibility. Theory predicts that, for dense polymer brushes, wetting is achieved when the MW of the polymer brush equals (and is greater than) that of the polymer matrix. The observed partial dispersion of the PS19-Au and PEO45-Au nanoparticles in matrixes whose MW is greater than the brush MW is attributable to the existence of a high volume fraction of voids within the brush. These voids arise from the unique geometry of the nanoparticle surface arising from the juxtaposed facets of the gold nanoparticle. PS125-Au brushes are wetted by PS matrixes whose degree of polymerization is larger than 125, probably because of their lower grafting density on the gold core or the high fraction of void volumes caused by the facets on the gold cores. Dispersion thus occurs when the matrix MW is greater than that of the brush.
X-ray photon correlation spectroscopy is employed to investigate the motion of dilute suspensions of gold nanoparticles in low-molecular-weight polystyrene melts. At high temperatures, the observed motion is diffusive, with a rate that follows a Vogel-Fulcher temperature dependence. Closer to the glass transition temperature Tg, diffusion is superseded by a hyperdiffusive process that first becomes observable near a crossover temperature Tc approximately 1.1Tg and is identified with heterogeneous strain in the melts. Following rapid cooling to temperatures sufficiently below Tc, but still above Tg, the hyperdiffusive dynamics displays a time dependence similar to aging in polymer glasses.
We describe x-ray photon correlation spectroscopy (XPCS) experiments tracking the motion of gold nanoparticles within solutions of high-molecular-weight polystyrene. Over displacements from nanometers to tens of nanometers, the particles undergo subdiffusive motion that is dictated by the temporal evolution of the entangled polymer mesh in the immediate vicinity of the particles. The results thus provide a novel microscopic dynamical characterization of this key structural property of polymers and more broadly demonstrate the capability of XPCS-based microrheology to interrogate heterogeneous mechanical environments in nanostructured soft materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.