High Velocity Oxy-Fuel (HVOF) spray techniques can produce high performance alloy and cermet coatings for applications that require wear resistant surfaces. In HVOF spraying heat is produced by burning mixtures of oxygen and fuel, mainly hydrogen, kerosene, propane, propylene, natural gas or acetylene. In these processes, the particle velocity and temperature determine the resultant coating properties and in many cases enables a better understanding of the process. The aim of this study is to investigate influences of different oxygen/fuel ratios on velocity and temperature of flying particles as well as properties of the HVOF thermal sprayed WC-CoCr coatings. In this work the feedstock powders were thermally sprayed by two different variants of the high velocity oxy-fuel process, in which the fuels were hydrogen and kerosene. Particle parameters were recorded just prior to impact on the substrate using in-flight particle diagnostic tool Accuraspray-g3®. Detailed correlation of particle parameters and the coating properties is evaluated in order to deduce particle parameter ranges providing coatings with optimum properties.
Hard chrome plating has been used in several different applications in industries that require abrasive sliding wear resistance, such as hydraulic pistons, shafts or bearings. However, the increasing environmental and worker safety pressures on electrolytic hard chrome are leading companies to adopt alternatives. The improvements of the high-velocity-oxy-fuel (HVOF) thermal spray process allow the chromium coating replacement with a comparable or superior surface treatment and are more environmentally friendly. This HVOF process, as a flexible dry-coating technology, avoids high-volume waste streams and enables a flexible choice of coating material for each application. The cobalt-chromium-cemented tungsten carbides are some of the easiest materials to spray and the WC-10Co-4Cr coatings have demonstrated superior performance over hard chrome with regard to mechanical and tribological properties. In this work, this coating has been deposited with a Sulzer Metco WokaJet-400 kerosene fuel spray gun, and the spray conditions have been optimized in order to ensure the best properties of the coatings. The mechanical and tribological properties have been evaluated in coatings sprayed with four deposition conditions that involve different gas flow rates. The most wear-resistant coating is obtained with those HVOF parameters that prevent decarburization of WC particles and, at the same time, allow an adequate agglomerate melting giving a good intersplat adhesion. The results indicate that HVOF-sprayed WC-CoCr coatings are a reliable alternative to electrolytic hard chrome (EHC) in the aeronautical industry to coat landing gear components. In particular, in the dry wear tests, the WC-CoCr coatings outperform hard chrome coatings in wear resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.