A method is proposed for the determination of lead by generation of its hydride and detection by quartz-tube AAS using a reagent injection FIA system based on the injection of sodium tetrahydroborate. Lead hydride generation was carried out using a combination of 0.5 M nitric acid, 10% m/ v hydrogen peroxide and 10% m/ v sodium tetrahydroborate. The characteristic concentration obtained was 3.1 ng mL(-1) and the detection limit was 2.6 ng mL(-1) for an injected volume of 0.125 mL of tetrahydroborate.
Objectives
Exposure to silica nanoparticles has been associated with pleural effusions (PEs) in animal models and case series. We hypothesized that some PEs labelled as “idiopathic” could, in fact, be secondary to inhalation of silica.
Methods
A retrospective case control study was designed utilizing a prospectively maintained pleural database. Cases, represented by idiopathic PEs, were matched by age and gender to control patients who had been diagnosed with malignant, cardiac, or infectious PEs. A survey consisting of questions about occupational life and possibility of silica inhalation was conducted. In a subgroup of patients, pleural fluid concentrations of silica were quantified by plasma atomic emission spectrometry analysis. Also, the pleural biopsy of a silica-exposed case was subjected to an energy dispersive X-ray spectroscopy (EDX) to identify the mineral, the size of which was determined by electron microscopy.
Results
A total of 118 patients (59 cases and 59 controls) completed the survey. There were 25 (42%, 95% CI 31–55%) and 13 (22%, 95% CI 13–34%) silica-exposed workers in case and control groups, respectively. The exposure attributable fraction was 0.62 (95% CI 0.14–0.83). Four of eight exposed cases showed detectable levels of silica in the pleural fluid (mean 2.37 mg/L), as compared to none of 16 tested controls. Silica nanoparticles of 6–7 nm were identified in the pleural biopsy of an exposed case patient.
Conclusions
It is plausible that some idiopathic PEs could actually be caused by occupational silica inhalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.