Six different glycosyl esters of nucleoside pyrophosphates (monosaccharide nucleotides) were analyzed by means of matrix-assisted laser desorption/ionisation reflectron time-of-flight mass spectrometry (MALDI/RToF MS) in the negative ion mode. Several matrices were evaluated and 3-hydroxypicolinic acid as well as α-cyano-4-hydroxycinnamic acid (CHCA) turned out to be the matrices of choice applying the thin layer technique to obtain maximum sensitivity for deprotonated molecular ion detection and maximal fragmentation particular with CHCA. The determination of the molecular mass with a mass accuracy below 0.1% was feasible with sample amounts in the lower femtomole range applying a MALDI desk-top mass spectrometer. A further important refinement of this technique was the use of post source decay (PSD) fragment ion analysis with a curved field reflector (which means no stepping of the reflector voltage). Detailed structural information of the six selected monosaccharide nucleotides could be obtained with PSD and differences in the fragmentation pattern were used to distinguish them. This method (based on molecular mass and PSD fragment ion analysis) has been applied to verify the presence of a glycosyl ester of nucleoside pyrophosphate in samples from Saccharomyces cerevisiae.
KeywordsMALDI; post source decay; mass spectrometry; carbohydrate biosynthesis; glycosyl ester of nucleoside pyrophosphate; negative ions; ToF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.