NoC-based designs provide a scalable and flexible communication solution for the rising number of processing cores on a single chip. To master the complexity of the software design in such a NoC-based multi-core architecture, advanced incremental integration testing solutions are required. In this presents a virtual platform based software testing and debugging approach for a synchronous application model on a 2x2 NoC-based MPSoC. We propose a development approach and a test environment that exploits the time approximation within Imperas OVP instruction accurate simulator and a functional model of the Nostrum NoC, for both software instructions and hardware clock cycles at larger time stamps called Quantums that does not sacrifice functional correctness. The functional testing environment runs the target software without running it on the real hardware platform. With the help of Nostrum NoC we can support a synchronous system execution that is reasonably fast and precise with respect to a global synchronization signal, called HeartBeat. As work in progress, this work also discusses several possible timing refinement and their possible implication on the simulation semantics and performance and how it is tackled in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.