BackgroundBacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10.ResultsWe sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity.ConclusionsComparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster, and genes unique to individual strains, such as novel type III effectors and bacteriocin genes, have been identified providing new clues for our understanding of pathogen virulence, aggressiveness, and host preference. These analyses will aid in efforts towards breeding for broad and durable resistance in economically important tomato and pepper cultivars.
The use of phages for disease control is a fast expanding area of plant protection with great potential to replace the chemical control measures now prevalent. Phages can be used effectively as part of integrated disease management strategies. The relative ease of preparing phage treatments and low cost of production of these agents make them good candidates for widespread use in developing countries as well. However, the efficacy of phages, as is true of many biological control agents, depends greatly on prevailing environmental factors as well as on susceptibility of the target organism. Great care is necessary during development, production and application of phage treatments. In addition, constant monitoring for the emergence of resistant bacterial strains is essential. Phage-based disease control management is a dynamic process with a need for continuous adjustment of the phage preparation in order to effectively fight potentially adapting pathogenic bacteria.
Bacteriophages are currently used as an alternative method for controlling bacterial spot disease on tomato incited by Xanthomonas campestris pv. vesicatoria. However, the efficacy of phage is greatly reduced due to its short residual activity on plant foliage. Three formulations that significantly increased phage longevity on the plant surface were tested in field and greenhouse trials: (i) PCF, 0.5% pregelatinized corn flour (PCF) + 0.5% sucrose; (ii) Casecrete, 0.5% Casecrete NH-400 + 0.5% sucrose + 0.25% PCF; and (iii) skim milk, 0.75% powdered skim milk + 0.5% sucrose. In greenhouse experiments, the nonformulated, PCF-, Casecrete-, and skim milk-formulated phage mixtures reduced disease severity on plants compared with the control by 1, 30, 51, and 62%, respectively. In three consecutive field trials, nonformulated phage caused 15, 20, and 9% reduction in disease on treated plants compared with untreated control plants, whereas plants treated with PCF- and Casecrete-formulated phage had 27, 32, and 12% and 30, 43, and 24% disease reduction, respectively. Plants receiving copper-mancozeb treatments were included in two field trials and had a 20% decrease in disease in the first trial and a 13% increase in the second one. Skim milk-formulated phage was tested only once and caused an 18% disease reduction. PCF-formulated phage was more effective when applied in the evening than in the morning, reducing disease on plants by 27 and 13%, respectively. The Casecrete-formulated phage populations were over 1,000-fold higher than the nonformulated phage populations 36 h after phage application.
The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors.
Bacteria cause a number of economically important plant diseases. Bacterial outbreaks are generally problematic to control due to lack of effective bactericides and to resistance development. Bacteriophages have recently been evaluated for controlling a number of phytobacteria and are now commercially available for some diseases. Major challenges of agricultural use of phages arise from the inherent diversity of target bacteria, high probability of resistance development, and weak phage persistence in the plant environment. Approaches for resistance management--by applying phage mixtures and host-range mutant phages and, for increasing residual activity, by employing protective formulations, avoiding sunlight, and utilizing propagating bacterial strains--resulted in better efficacy and reliability. Deployment of phage therapy as part of an integrated disease management strategy, which includes the use of genetic control, cultural control, biological control, and chemical control, also has been investigated and will likely increase in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.