This paper presents an efficient control strategy for magnetorheological (MR) dampers embedded in building structures to mitigate quake-induced vibrations. In this work, MR dampers are used as semi-active devices, taking the advantages of the fail-safe operation and low power requirement. By using a static hysteresis model for the MR damper, a suitable controller is proposed here for direct control of the supply currents of the MR dampers using feedback linearization. The dampers are configured in a differential mode to counteract the force-offset problem from the use of a single damper. The effectiveness of the proposed technique is verified in simulation by using a ten-storey building model subject to quake-like excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.