Cytospora species are destructive canker and dieback pathogens of woody hosts in natural and agroecosystems around the world. In this genus, molecular identification has been limited due to the paucity of multi-locus sequence typing studies and the lack of sequence data from type specimens in public repositories, stalling robust phylogenetic reconstructions. In most cases a morphological species concept could not be applied due to the plasticity of characters and significant overlap of morphological features such as spore dimensions and fruiting body characters. In this study, we employed a molecular phylogenetic framework with the inclusion of four nuclear loci (ITS, translation elongation factor 1-alpha, actin, and beta-tubulin) to unveil the biodiversity and taxonomy of this understudied important genus of plant pathogens. Phylogenetic inferences based on 150 Californian isolates revealed 15 Cytospora species associated with branch and twig cankers and dieback of almond, apricot, cherry, cottonwood, olive, peach, pistachio, plum, pomegranate, and walnut trees in California. Of the 15 species recovered in this study, 10 are newly described and typified, in addition to one new combination. The pathogenic status of the newly described Cytospora species requires further investigation as most species were associated with severe dieback and decline of diverse and economically important fruit and nut crops in California.
Almond trees with trunk and branch cankers were observed in several orchards across almond-producing counties in California. Symptoms of cankers included bark lesions, discoloration of xylem tissues, longitudinal wood necrosis, and extensive gumming. Spur and shoot blight associated with rotted fruit were detected in two orchards in Kern County. The fungus Neoscytalidium dimidiatum was consistently recovered from the various cankers, infected fruit, and blighted shoots and its identity was confirmed based on phylogenetic and morphological studies. Phylogenetic analyses of the internal transcribed spacer, translation elongation factor 1-α, and β-tubulin genes comparing 47 strains from California with reference specimens within the family Botryosphaeriaceae and coupled with detailed morphological observations validated the identity of the pathogenic fungus. Pathogenicity tests conducted in the field using 1- to 2-year-old branches inoculated with mycelium plugs or conidial suspensions and attached fruit inoculated with conidial suspensions fulfilled Koch’s postulates. N. dimidiatum appeared highly virulent in almond-producing cankers of up to 22 cm in length within 4 weeks using mycelium plug inoculations as well as severe fruit rot combined with spur blight on the fruit-bearing spurs. This study reports, for the first time, the fungus N. dimidiatum as a pathogen of almond in California causing canker, shoot blight, and fruit rot. Disease symptoms are described and illustrated.
Black foot disease is a common and destructive root disease of grapevine caused by a multitude of cylindrocarponlike fungi in many viticultural areas of the world. This study identified 12 cylindrocarpon-like fungal species across five genera associated with black foot disease of grapevine and other diverse root diseases of fruit and nut crops in the Central Valley Region of California. Morphological observations paired with multi-locus sequence typing of four loci, internal transcribed spacer region of nuclear rDNA ITS1-5.8S-ITS2 (ITS), beta-tubulin (TUB2), translation elongation factor 1-alpha (TEF1), and histone (HIS), revealed 10 previously described species; Campylocarpon fasciculare, Dactylonectria alcacerensis,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.