SUMMARY
Trypanosoma cruzi infection in BALB/c mice induced a reversible polyisotypic hypergammaglobulinaemia, with particularly high levels of IgG2a, IgM and IgE. Hypergammaglobulinaemia started during the acute phase of infection and persisted during chronic disease until 11–13 weeks post‐infection (w.p.i.), when immunoglobulin levels, with the exception of IgE, returned near normal values. Parasite‐specific antibodies counted for 14 to 23% of gammaglobulinaemia, in acute and chronic infection respectively. The titres of IgM antibodies rose from two w.p.i. IgA, IgE and IgG subclass antibodies built up gradually over the time of parasite clearance (i.e., between three and six w.p.i.). All antibody isotypes, including IgM reached significant and stable titres throughout chronic infection. IgG2a, IgG1 and IgM antibodies had constantly higher titres than the other antibody isotypes. The dominance of IgG2a antibodies was due to their high plasma concentrations, around 70% of all antibodies available in the chronic infection. IgG1 had the highest functional avidity, whereas its concentration corresponded to only 10% of the whole antibody fraction. These results indicate that T. cruzi infection in mice induces a polyisotypic humoral immune response, dominated by some antibody isotypes, with major differences in concentrations and functional avidities. This could be of crucial importance in determining the outcome of infection.
Fetal growth, reproductive capacity, and parasitemia were studied in three groups of BALB/c mice: pregnant and chronically infected with Trypanosoma cruzi, non pregnant but similarly infected, and pregnant but noninfected. The pregnant mice were killed on day 17 of pregnancy. Comparisons of the two pregnant groups showed significant differences in fetal weights and x 18 magnified ossification lengths of radius and cubitus, whereas placental weights were not modified. The results indicate that intrauterine growth retardation occurs during chronic marine T. cruzi infection. No difference was noted between the reproductive capacities of the two pregnant groups. Parasitemias were similar in infected pregnant and control groups. Mice of all groups survived infection until killing. Pregnancy, therefore, does not influence chronic murine T. cruzi infection. Parasites were never found in fetal blood, indicating a very low, if any, frequency of transplacental transmission of parasite during the chronic phase of infection.
Trypanosoma cruzi proteinases are very likely involved in host-cell invasion. Physiological plasma-proteinase inhibitors from the macroglobulin (MG) family, among them alpha-2-macroglobulin (A2M), are found in tissues and in the plasma of mammals. By complexing to all classes of proteinases, MGs inhibit their action on high-molecular-weight substrates. In vitro studies have shown that A2M impairs T. cruzi proteases and, consequently, the parasite's ability to invade host cells and enhances the phagocytic and microbicidal actions of resident macrophages against T. cruzi. To test the hypothesis of a putative "protective" effect for MG, we quantified it in BALB/cj mice during the course of an experimental T. cruzi infection, comparing a posteriori the levels in mice that died with those in animals that survived, which were considered as being susceptible and resistant to the infection, respectively. The results showed that surviving mice showed an increase in plasma concentrations of MG during the first few weeks after the infection, whereas the levels in mice that died during the acute phase did not differ significantly from those in non-infected mice. These findings and the previous in vitro data indicate a role for physiological proteinase inhibitors, particularly alpha-macroglobulins, in resistance to T. cruzi infection, whereby a balance between parasite proteases and host protease inhibitors may be crucial. MG may thus participate in the complex network of reactions involved in the early acute phase of the disease and contribute by conferring to the host an ability to survive the infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.