In the present investigation, treatment of metal cutting wastewater (MCW) using electrocoagulation (EC) process is designed and analyzed using response surface methodology (RSM). RSM is applied to optimize the operating variables viz. initial pH, current density, and operating time on the treatment of MCW in a batch mode by EC process using iron and aluminum electrodes. Quadratic models are developed for the responses such as chemical oxygen demand (COD), total organic carbon (TOC), and turbidity, and operating cost is calculated with respect to energy, electrode, and chemical consumptions. The actual COD, TOC, and turbidity removal efficiencies at optimized conditions are found to be 93.0%, 83.0%, and 99.8% for Fe electrode and 93.5%, 85.2%, and 99.9% for Al electrode, respectively, which agree well with the predicted response. The proposed model fits very well with the experimental data with R 2 adjusted correlation coefficients of 0.927 for COD, 0.924 for TOC, and 0.968 for turbidity removal for Al and 0.904 for COD, 0.976 for TOC, and 0.989 for turbidity removal for Fe electrodes, respectively. This study clearly shows that RSM is one of the suitable methods to optimize the operating conditions and maximize the COD, TOC, and turbidity removal efficiencies for both electrodes while keeping the operating costs to minimal (0.371 €/m 3 for Fe and 0.337 €/m 3 for Al electrodes).
Textile dyeing wastewater was treated by electrocoagulation using aluminium and iron plate electrodes. Response surface methodology and central composite design were applied in the experiments and in statistical data analysis. A current density of 30–100 A m−2, an initial pH of 4–8, and an operating time of 10–40 min were chosen as independent variables, and the chemical oxygen demand, total organic carbon, and turbidity removal efficiencies and the operating cost were selected as responses in the electrocoagulation process. The developed quadratic models for the responses and the experimental data were in good agreement with model predictions statistically (R2 ≥ 0.92, Adj R2 ≥ 0.82, and Prob > F < 0.004). The optimised operating variables (initial pH, current density, and operating time) and the maximum total organic carbon, chemical oxygen demand, and turbidity removal efficiencies for textile dyeing wastewater were 5.5, 63.2 A m−2, 30.4 min, 77%, 82%, and 94% for the iron electrode and 5.6, 52.5 A m−2, 33.9 min, 68%, 69% and 99% for the aluminium electrode respectively. Minimum operating costs for the iron and aluminium electrodes under optimum conditions were €2.1 m−3 (€1.0 kg−1 COD) and €2.4 m−3 (€1.6 kg−1 COD). The iron electrode was found to be superior to the aluminium electrode in terms of removal efficiencies and operating cost for the treatment of textile dyeing wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.