This study analysed genomic variation of the translation elongation factor 1a (TEF-1a) and the intergenic spacer region (IGS) of the nuclear ribosomal operon of Fusarium oxysporum f. sp. cubense (Foc) isolates, from different banana production areas, representing strains within the known races, comprising 20 vegetative compatibility groups (VCG). Based on two single nucleotide polymorphisms present in the IGS region, a PCR-based diagnostic tool was developed to specifically detect isolates from VCG 01213, also called tropical race 4 (TR4), which is currently a major concern in global banana production. Validation involved TR4 isolates, as well as Foc isolates from 19 other VCGs, other fungal plant pathogens and DNA samples from infected tissues of the Cavendish banana cultivar Grand Naine (AAA). Subsequently, a multiplex PCR was developed for fungal or plant samples that also discriminated Musa acuminata and M. balbisiana genotypes. It was concluded that this diagnostic procedure is currently the best option for the rapid and reliable detection and monitoring of TR4 to support eradication and quarantine strategies.
Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.
Background: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome.
RESUMOAs viroses constituem o principal grupo de doenças do mamoeiro (Carica papaya), ocasionando grandes perdas na produção, podendo chegar à destruição total das plantações afetadas. Embora mais de dez vírus tenham sido constatados infetando naturalmente o mamoeiro, em todo o mundo, no Brasil, até o presente, foram assinaladas apenas as ocorrências do vírus da mancha anelar do mamoeiro (Papaya ringspot virus, PRSV), do vírus do amarelo letal do mamoeiro (Papaya lethal yellowing virus, PLYV) e do vírus da meleira que se encontra em fase de caracterização. A mancha anelar causada pelo PRSV é, inquestionavelmente, o mais importante problema sanitário do mamoeiro. O controle do PRSV mostra-se imprescindível, apesar de bastante difícil, em razão da sua forma de disseminação rápida e eficiente por diversas espécies de afídeos e ausência de resistência genética em C. papaya. Na tentativa de controlar o PRSV, várias medidas já foram testadas, não existindo, até o momento, nenhuma estratégia eficiente e duradoura para seu controle no Brasil. O desenvolvimento de plantas transgênicas de mamoeiro expressando o gene da capa protéica (cp) do PRSV, imunes ao mesmo, abriu nova possibilidade para solução do problema.Palavras-chave adicionais: mancha anelar, amarelo letal, meleira, Papaya lethal yellowing virus, Papaya ringspot virus, plantas transgênicas. ABSTRACT Etiology and control strategies of papaya virus diseases in Brazil
A reproducible and effective biolistic method for transforming papaya (Carica papaya L.) was developed with a transformation-regeneration system that targeted a thin layer of embryogenic tissue. The key factors in this protocol included: 1) spreading of young somatic embryo tissue that arose directly from excised immature zygotic embryos, followed by another spreading of the actively growing embryogenic tissue 3 d before biolistic transformation; 2) removal of kanamycin selection from all subsequent steps after kanamycin-resistant clusters were first isolated from induction media containing kanamycin; 3) transfer of embryos with finger-like extensions to maturation medium; and 4) transferring explants from germination to the root development medium only after the explants had elongating root initials, had at least two green true leaves, and were about 0.5 to 1.0 cm tall. A total of 83 transgenic papaya lines expressing the nontranslatable coat protein gene of papaya ringspot virus (PRSV) were obtained from somatic embryo clusters that originated from 63 immature zygotic embryos. The transformation efficiency was very high: 100% of the bombarded plates produced transgenic plants. This also represents an average of 55 transgenic lines per gram fresh weight, or 1.3 transgenic lines per embryo cluster that was spread. We validated this procedure in our laboratory by visiting researchers who did four independent projects to transform seven papaya cuhivars with coat protein gene constructs of PRSV strains from four different countries. The method is described in detail and should be useful for the routine transformation and regeneration of papaya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.