Context. In the past few years, there has been a rise in the detection of streamers, asymmetric flows of material directed toward the protostellar disk with material from outside the star's natal core. It is unclear how they affect the process of mass accretion, in particular beyond the Class 0 phase. Aims. We investigate the gas kinematics around Per-emb-50, a Class I source in the crowded star-forming region NGC 1333. Our goal is to study how the mass infall proceeds from envelope to disk scales in this source. Methods. We use new NOEMA 1.3 mm observations, including C 18 O, H 2 CO and SO, in the context of the PRODIGE MPG -IRAM program, to probe the core and envelope structures toward Per-emb-50. Results. We discover a streamer delivering material toward Per-emb-50 in H 2 CO and C 18 O emission. The streamer's emission can be well described by the analytic solutions for an infalling parcel of gas along a streamline with conserved angular momentum, both in the image plane and along the line of sight velocities. The streamer has a mean infall rate of 1.3 × 10 −6 M yr −1 , 5 − 10 times higher than the current accretion rate of the protostar. SO and SO 2 emission reveal asymmetric infall motions in the inner envelope, additional to the streamer around Per-emb-50. Furthermore, the presence of SO 2 could mark the impact zone of the infalling material. Conclusions. The streamer delivers sufficient mass to sustain the protostellar accretion rate and might produce an accretion burst, which would explain the protostar's high luminosity with respect to other Class I sources. Our results highlight the importance of late infall for protostellar evolution: streamers might provide a significant amount of mass for stellar accretion after the Class 0 phase.
Aims. We present high sensitivity and high-spectral resolution NOEMA observations of the Class 0/I binary system SVS13A, composed of the low-mass protostars VLA4A and VLA4B with a separation of ∼90 au. VLA4A is undergoing an accretion burst that enriches the chemistry of the surrounding gas. This gives us an excellent opportunity to probe the chemical and physical conditions as well as the accretion process. Methods. We observe the (12 K − 11 K ) lines of CH 3 CN and CH 3 13 CN, the DCN (3-2) line, and the C 18 O (2-1) line toward SVS13A using NOEMA. Results. We find complex line profiles at disk scales which cannot be explained by a single component or pure Keplerian motion. By adopting two velocity components to model the complex line profiles, we find that the temperatures and densities are significantly different between these two components. This suggests that the physical conditions of the emitting gas traced via CH 3 CN can change dramatically within the circumbinary disk. In addition, combining our observations of DCN (3-2) with previous ALMA high-angularresolution observations, we find that the binary system (or VLA4A) might be fed by an infalling streamer from envelope scales (∼700 au). If this is the case, this streamer contributes to the accretion of material onto the system with a rate of at least 1.4 × 10 −6 M yr −1 . Conclusions. We conclude that the CH 3 CN emission in SVS13A traces hot gas from a complex structure. This complexity might be affected by a streamer that is possibly infalling and funneling material into the central region.
Context. The Magellanic Bridge is a tidal feature located between the Magellanic Clouds, containing young stars formed in situ. Its proximity allows high-resolution studies of molecular gas, dust, and star formation in a tidal low-metallicity environment. Aims. Our goal is to characterize gas and dust emission in Magellanic Bridge A, the source with the highest 870 μm excess of emission found in single-dish surveys. Methods. Using the ALMA telescope including the Morita Array, we mapped a 3′ field of view centered on the Magellanic Bridge A molecular cloud, in 1.3 mm continuum emission and 12CO(2−1) line emission at subparsec resolution. This region was also mapped in continuum at 870 μm and in 12CO(2−1) line emission at ~6 pc resolution with the APEX telescope. To study its dust properties, we also use archival Herschel and Spitzer data. We combine the ALMA and APEX 12CO(2−1) line cubes to study the molecular gas emission. Results. Magellanic Bridge A breaks up into two distinct molecular clouds in dust and 12CO(2−1) emission, which we call North and South. Dust emission in the North source, according to our best parameters from fitting the far-infrared fluxes, is ≈3 K colder than in the South source in correspondence to its less developed star formation. Both dust sources present large submillimeter excesses in LABOCA data: according to our best fits the excess over the modified blackbody (MBB) fit to the Spitzer/Herschel continuum is E(870 μm) ~ 7 and E(870 μm) ~ 3 for the North and South sources, respectively. Nonetheless, we do not detect the corresponding 1.3 mm continuum with ALMA. Our limits are compatible with the extrapolation of the MBB fits, and therefore we cannot independently confirm the excess at this longer wavelength. The 12CO(2−1) emission is concentrated in two parsec-sized clouds with virial masses of around 400 and 700 M⊙. Their bulk volume densities are n(H2) ~ 0.7−2.6 × 103 cm−3, higher than typical bulk densities of Galactic molecular clouds. The 12CO luminosity to H2 mass conversion factor αCO is 6.5 and 15.3 M⊙ (K km s−1 pc2)−1 for the North and South clouds, calculated using their respective virial masses and 12CO(2−1) luminosities. Gas mass estimates from our MBB fits to dust emission yields masses M ~ 1.3 × 103 M⊙ and 2.9 × 103 M⊙ for North and South, respectively, a factor of ~4 higher than the virial masses we infer from 12CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.