L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.
Sequences within the spacer region of yeast rRNA cistrons stimulate synthesis of the major 35S rRNA precursor in vivo 10-to 30-fold (E. A. Elion and J. R. Warner, Cell 39:663-673, 1984). Spacer sequences that mediate this stimulatory activity are located approximately 2.2 kilobases upstream from sequences that encode the 5' terminus of the 35S rRNA precursor. By utilizing a centromere-containing plasmid carrying a 35S rRNA minigene, a 160-base-pair region of spacer rDNA was identified by deletion mapping that is required for efficient stimulation of 35S rRNA synthesis in vivo. A 22-base-pair sequence, previously shown to support RNA polymerase I-dependent selective initiation of transcription in vitro, was located 15 base pairs upstream from the 3' boundary of the stimulatory region. A 77-base pair region of spacer DNA that mediates transcriptional terminator activity in vivo was identified immediately downstream from the 5' boundary of the stimulatory region. Deletion mutations extending downstream from the 5' boundary of the 160-base-pair stimulatory region simultaneously interfere with terminator activity and stimulation of 35S rRNA synthesis from the minigene. The terminator region supported termination of transcripts initiated by RNA polymerase I in vivo. The organization of sequences that support terminator and promoter activities within the 160-base-pair stimulatory region is similar to the organization of rDNA gene promoters in higher organisms. Possible mechanisms for spacer-sequence-dependent stimulation of yeast 35S rRNA synthesis in vivo are discussed.rRNA genes in the yeast Saccharomyces cerevisiae are tandemly repeated approximately 120 times in one cluster located on chromosome 12 (27). Each cistron contains the information for all of the mature rRNAs. RNA polymerase I is responsible for the synthesis of a 35S rRNA precursor that is processed to form the 18S, 5.8S, and 25S rRNAs. The 5S rRNA gene is located in the spacer region between 35S rRNA transcription units and is transcribed by RNA polymerase III. Synthesis of 35S rRNA has been studied in several laboratories using both in vitro (9,11,19,23,32,33,35, 36) and in vivo (1,5,15,17,19,28) approaches. The 5' terminus of 35S rRNA has been mapped in both S. cerevisiae (1, 17) and Saccharomyces carlsbengensis (19). RNA sequencing analysis showed that 35S rRNA molecules contain a 5' triphosphate, suggesting that transcription is initiated with the 5'-terminal sequences of 35S rRNA (18,26). Analysis of transcripts synthesized in isolated yeast nuclei in the presence of -y-sulfhydryl nucleoside triphosphates supports this conclusion (19,23).We showed previously that cloned yeast rDNA templates support RNA polymerase I-dependent selective initiation of transcription with a whole-cell extract (32). Transcription of this in vitro reaction initiates from a site 2.2 kilobases (kb) upstream from sequences that encode the 5' terminus of 35S rRNA. Deletion mapping studies defined a 22-base-pair rDNA sequence as being both necessary and sufficient for selecti...
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JRCSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.
The human T-cell leukemia virus type II (HTLV-II) regulatory protein Rex augments cytoplasmic levels of unspliced gag-pol mRNA by acting through a Rex-responsive element (RxRE) in the long terminal repeat. Purified Rex protein binds to long terminal repeat mRNA. Here, using an immunobinding assay to measure the binding of Rex protein to mutated RxRE RNAs, we show that efficient Rex binding requires a stem-bulge-loop RNA secondary structure (nucleotides [nt] 465 to 500) and specific sequences both within the stem-bulge (nt 470 to 476) and within a conserved upstream splice donor site (nt 449 to 455). Rex function in a transient transfection expression system correlates with Rex protein-RxRE RNA binding. The ability of HTLV-II Rex to interact directly with the HTLV-ll splice donor site suggests that HTLV-II Rex may increase expression of unspliced gag-pol mRNA, in part, by inhibiting splicing.
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26r and p24r, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26r is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.