In this investigation Ag, TiO2 and ZnO nanoparticles were synthesized by simple and low cost methods and then, they were coated at different concentrations on cotton fabrics. Finally, their morphology, photocatalytic properties and antibacterial activity were assessed. Among them, TiO2 nanoparticles exhibited antibacterial activity under ultraviolet irradiations. The results revealed that the combination of Ag, TiO2 and ZnO nanoparticles causes the formation of Schottky barrier between metal (Ag) and semiconductors (ZnO and TiO2). Besides, the results indicated that anatase and rutile types of TiO2 nanoparticles form defect at the interface of the phases acting as an electron sink and prevent electron‐hole recombination, and consequently improve photocatalytic properties. Moreover, the optimum photocatalytic and antibacterial activities were observed in the decorated fabrics containing 50 mg ZnO, 50 mg TiO2 and 7.34 mg Ag in 500 ml distilled water. This sample also showed higher antibacterial activity against Shigella than Salmonella Typhi.
In this study, we aimed to observe how different operating parameters influenced the photocatalytic degradation of rhodamine B (RhB, cationic dye) and bromophenol Blue (BPB, anionic dye) over ZnO/CuO under visible light irradiation. This further corroborated the optimization study employing the response surface methodology (RSM) based on central composite design (CCD). The synthesis of the ZnO/CuO nanocomposite was carried out using the co-precipitation method. The synthesized samples were characterized via the XRD, FT-IR, FE-SEM, Raman, and BET techniques. The characterization revealed that the nanostructured ZnO/CuO formulation showed the highest surface area (83.13 m2·g−1). Its surface area was much higher than that of pure ZnO and CuO, thereby inheriting the highest photocatalytic activity. To substantiate this photocatalytic action, the investigative analysis was carried out at room temperature, associating first-order kinetics at a rate constant of 0.0464 min−1 for BPB and 0.07091 min−1 for RhB. We examined and assessed the binary interactions of the catalyst dosage, concentration of dye, and irradiation time. The suggested equation, with a high regression R2 value of 0.99701 for BPB and 0.9977 for RhB, accurately matched the experimental results. Through ANOVA we found that the most relevant individual parameter was the irradiation time, followed by catalyst dose and dye concentration. In a validation experiment, RSM based on CCD was found to be suitable for the optimization of the photocatalytic degradation of BPB and RhB over ZnO/CuO photocatalysts, with 98% degradation efficiency.
Here, we reported the synthesis of ZnO/Alg bionanocomposite and analyzed photocatalytic degradation efficiency for MB and MO dyes under UV light. We also performed optimization studies using the RSM-CCD method and obtained 98% degradation efficiency.
Background: Zinc Oxide Nanoparticles (ZnO NPs) have wide applications in various industries, especially they have been known for their antibacterial effects in polymers and textile fibers. ZnO NPs were produced by two different solutions and milling methods. Different techniques were used in order to select the most effective methods for coating the fabric with ZnO NPs. The microstructures and the composition of the ZnO NPs were investigated using Field Emission Scanning Electron Microscopy (FE-SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray diffraction analysis (XRD). Additionally, the antibacterial activity of the treated fabric against Staphylococcus aureus and Escherichia coli bacteria was investigated. The overall experimental findings show that the highest inhibitory effect against Staphylococcus aureus in the sample of fabric which covered with ZnO NPs synthesized by the solution method. Methods: In the solution method, ZnO NPs were synthesized by dissolving zinc chloride in 1, 2 Ethanediol and mixing with aqueous solution of sodium hydroxide. In milling method, firstly, zinc sulfide nanoparticles were prepared through reaction between zinc acetate and Thioacetamide and then by milling and oxidation the zinc sulfide nanoparticles, ZnO NPs were synthesized. In order to deposition ZnO NPs on the Tetron fabric, it was fully drawn and fixed on a frame. After that, acrylic copolymer resin was added into distilled water and ZnO NPs were added in another beaker to ethanol. The two beakers were then placed in the ultrasonic bath for a certain time. Finally, the fabric was dipped into the beaker containing resin for some moment and then immersed into the beaker containing ZnO NPs. During these processes, both beakers were in the ultrasonic bath. After drawing out the fabric from second beaker, it was dried in air. This procedure was performed for both types of ZnO NPs fabricated by two mentioned methods. Antibacterial activity of ZnO NPs coated on the fabric against two types of bacteria was studied by agar diffusion method. Results: XRD patterns of synthesized powders from both methods were identified as ZnO NPs. Sharp diffraction peaks indicate good crystallinity of ZnO NPs. The morphology of the ZnO NPs fabricated by both methods which was analyzed by field emission SEM shows that the ZnO particles synthesized by milling and solution methods are in nano scale at the range of 26 - 29 nm and 9 - 11 nm, respectively. The highest inhibitory effect against Staphylococcus aureus was shown for the fabric which coated by ZnO NPs produced by the solution method. It was seen, the antibacterial activity of ZnO NPs fabricated by solution method was higher than that of milling method. Conclusion: ZnO NPs were synthesized by two different methods and the antibacterial activity of Tetron fabric coated with ZnO NPs was studied. Distribution and stability of ZnO NPs on the fabric depend on fabrication method and particle size which means that the smaller particles have more stability and better distribution than larger particles. The particle size and deposited concentration of ZnO NPs were effective on antibacterial activity, so that the smaller particles tend less agglomeration and have more surface area and because of that better antibacterial activity. Overall the results demonstrated a good antibacterial activity against Staphylococcus aureus than Escherichia coli.in the sample of fabric which covered with ZnO NPs synthesized by the solution method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.