Environmental factors interact with the genome throughout life to determine gene expression and, consequently, tissue function and disease risk. One such factor that is known to play an important role in determining long-term metabolic health is diet during critical periods of development. Epigenetic regulation of gene expression has been implicated in mediating these programming effects of early diet. The precise epigenetic mechanisms that underlie these effects remain largely unknown. Here, we show that the transcription factor Hnf4a, which has been implicated in the etiology of type 2 diabetes (T2D), is epigenetically regulated by maternal diet and aging in rat islets. Transcriptional activity of Hnf4a in islets is restricted to the distal P2 promoter through its open chromatin configuration and an islet-specific interaction between the P2 promoter and a downstream enhancer. Exposure to suboptimal nutrition during early development leads to epigenetic silencing at the enhancer region, which weakens the P2 promoter-enhancer interaction and results in a permanent reduction in Hnf4a expression. Aging leads to progressive epigenetic silencing of the entire Hnf4a locus in islets, an effect that is more pronounced in rats exposed to a poor maternal diet. Our findings provide evidence for environmentally induced epigenetic changes at the Hnf4a enhancer that alter its interaction with the P2 promoter, and consequently determine T2D risk. We therefore propose that environmentally induced changes in promoter-enhancer interactions represent a fundamental epigenetic mechanism by which nutrition and aging can influence long-term health.maternal nutrition | developmental programming | DNA methylation | histone modifications | diet-gene interactions
Orexins (hypocretins), novel peptides expressed in specific neurons of the lateral hypothalamic area (LHA), stimulate feeding when injected intracerebroventricularly. We investigated their role in feeding in the rat by measuring hypothalamic prepro-orexin mRNA levels under contrasting conditions of increased hunger. Prepro-orexin mRNA levels increased significantly after 48 h of fasting (by 90-170%; P < 0.05) and after acute (6 h) hypoglycemia when food was withheld (by 90%; P < 0.02). By contrast, levels were unchanged during chronic food restriction, streptozotocin-induced diabetes, hypoglycemia when food was available, voluntary overconsumption of palatable food, or glucoprivation induced by systemic 2-deoxy-D-glucose. Orexin expression was not obviously related to changes in body weight, insulin, or leptin, but was stimulated under conditions of low plasma glucose in the absence of food. Orexins may participate in the short-term regulation of energy homeostasis by initiating feeding in response to falls in glucose and terminating it after food ingestion. The LHA is known to contain neurons that are stimulated by falls in circulating glucose but inhibited by feeding-related signals from the viscera; orexin neurons may correspond to this neuronal population.
The enzyme TEM beta-lactamase constitutes a versatile gene-fusion marker for studies on membrane proteins and protein export in bacteria. The mature form of this normally periplasmic enzyme displays readily detectable and distinctly different phenotypes when localized to the bacterial cytoplasm versus the periplasm, and thus provides a useful alternative to alkaline phosphatase for probing the topology of cytoplasmic membrane proteins. Cells producing translocated forms of beta-lactamase can be directly selected as ampicillin-resistant colonies, and consequently a beta-lactamase fusion approach can be used for positive selection for export signals, and for rapid assessment of whether any protein expressed in Escherichia coli inserts into the bacterial cytoplasmic membrane. The level of ampicillin resistance conferred on a cell by an extracytoplasmic beta-lactamase derivative depends on its level of expression, and therefore a beta-lactamase fusion approach can be used to directly select for increased yields of any periplasmic or membrane-bound gene products expressed in E. coli.
In a cross-sectional study, the activity, electrophoretic mobility and genotypes of glucose-6-phosphate dehydrogenase (G6PD) were determined among healthy, UAE national school boys from Al-Ain District in the United Arab Emirates. The prevalence of G6PD deficiency in this population sample was 11%. The majority of G6PD-deficient subjects were descendants of Omani, Baluchi or Yemeni migrants. Of 18 deficient subjects, 16 had an enzyme activity of < 10% of normal while 2 had an activity of just above 10%. Electrophoresis was performed on 166 samples and showed that, apart from deficient samples, all had the normal mobility of G6PD type B. Of the 18 deficient subjects, 14 had the B type mobility of G6PD Mediterranean and 4 had the A type mobility of G6PD A-. Genotyping demonstrated that 10 had the Mediterranean mutation while 3 had the A-mutation, consistent with their electrophoretic mobility. Another 3 had the G6PD Aures mutation, recently described as polymorphic in Algeria and Spain. The mutations in the remaining 2 subjects have not yet been identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.