Lanthanum zirconate (LZ) has emerged as a novel thermal barrier coating (TBC) material because of its higher temperature phase stability, and low sintering ability than the current standard yttria-stabilized zirconia (YSZ). In order to combine the advantages, LZ and YSZ feedstock powders are blended with predetermined weight ratios (50:50) as composite coatings. The leading issue in developing the composite coating using the atmospheric plasma spray method (APS) is finding the optimum range of input parameters to attain the desired coating properties. This issue can be resolved by developing empirical relations to find the porosity and micro hardness of the coating by the atmospheric plasma spray method (APS). Spray parameters such as input power, spray distance, and powder feed rate play a vital part in determining the coating quality. Three variables and five levels of central composite rotatable design (CCD) to reduce the overall run of the experiment were utilized in the research. The empirical relations were predicted to find the porosity and micro hardness of the specimens with APS process parameters, and the empirical relations were examined through ANOVA. Optimizing the plasma spray parameters was done using response surface methodology (RSM), which provides the minimum porosity and maximum hardness. It is validated using the surface response graphs, contour plots, and overlay plots. As a result, the input power has the greatest impact on the coating properties among the three variables, and the standoff distance and powder feed rate are the subsequent important spray parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.