This paper reports a revised Wiener filter to resolve the inverse problem for magnetoencephalograms (MEGs) according to the structural and functional constraints based on magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Wiener filter-MEG imaging for half field stimulation with the chromatic stimulus resolved fast, slow and late responses in V1, V4 and the inferotemporal cortex, respectively. The time courses of these responses were roughly comparable with those reported by unit recording studies of the corresponding monkey visual cortical areas. Wiener filter-MEG imaging had comparable spatial resolution and better signal to noise ratio than fMRI. The background noise was robust in fMRI responses, but became virtually eliminated in Wiener filter responses. Wiener filter-MEG imaging with upper and lower quadrant field stimulation demonstrated V1 responses differentially distributed respectively in the lower and upper banks of the calcarine sulcus. These results demonstrate that responses in two cortical areas facing close to each other can be resolved by Wiener filter-MEG. The present method provides a way to image brain activities with millisecond- and millimeter-order spatiotemporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.