The catalytic oxidation of 1,2-dichlorobenzene was investigated over NaYand NaX zeolites, loaded with chromium through the action of a robust biosorption system consisting of a bacterial biofilm supported on the zeolites. The results of biosorption showed that the maximum metal removal efficiency was 20%, in both systems based on NaYor NaX, starting from solutions with chromium(VI) concentrations ranging from 50 to 250 mg Cr /L. The bacterial biofilm, Arthrobacter viscosus, supported on the zeolite reduces Cr(VI) to Cr(III). The Cr(III) is retained in the zeolite by ion exchange. The new catalysts were characterized by spectroscopic methods (FTIR ), chemical analyses (ICP-AES), surface analysis (XRD) and thermal analysis (TGA). The various techniques of characterization show that this biosorption process does not modify the morphology and structure of the FAUzeolites. These catalysts, Cr/FAU, prepared through this new procedure present good activity and selectivity for dichlorobenzene oxidation in wet air at 350 8C. The Cr 50 -Y was selected as the most active, selective and stable catalyst for oxidation of 1,2-dichlorobenzene in wet air. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.