The article presents a method for optimizing driving strategies aimed at minimizing energy consumption while driving. The method was developed for the needs of an electric powered racing vehicle built for the purposes of the Shell Eco-marathon (SEM), the most famous and largest race of energy efficient vehicles. Model-based optimization was used to determine the driving strategy. The numerical model was elaborated in Simulink environment, which includes both the electric vehicle model and the environment, i.e., the race track as well as the vehicle environment and the atmospheric conditions. The vehicle model itself includes vehicle dynamic model, numerical model describing issues concerning resistance of rolling tire, resistance of the propulsion system, aerodynamic phenomena, model of the electric motor, and control system. For the purpose of identifying design and functional features of individual subassemblies and components, numerical and stand tests were carried out. The model itself was tested on the research tracks to tune the model and determine the calculation parameters. The evolutionary algorithms, which are available in the MATLAB Global Optimization Toolbox, were used for optimization. In the race conditions, the model was verified during SEM races in Rotterdam where the race vehicle scored the result consistent with the results of simulation calculations. In the following years, the experience gathered by the team gave us the vice Championship in the SEM 2016 in London.
Abstract. This paper describes the design of a prototype racing car designed for racing Shell Eco-marathon. In particular, the assumptions have been made to the vehicle simulation model used to predict the race strategy. These assumptions are the basis for an integrated methodology for designing racing cars, which provide a three-year development plan of the vehicle. Additionally, there are modular telemetry system, and computer applications for data visualization in the race.
In this paper, the authors discuss results of the research concerning a group of multitasking mobile robots that use advanced technologies. The main goal of the paper is to illustrate functionality of the robot group, wireless communication and control system based on Wi-Fi standard as well as architectures of the selected subsystems. The developed robots allow aiding humans in accomplishing tasks in an environment that may be dangerous. The group consists of teleoperated robots: a transporting robot, an exploring robot, and small monitoring robots. Teleoperated robots can be used most often as moving sensor devices. The group of robots is capable of monitoring and carrying out measurements of selected physical quantities, which can occur within the territory of any object, and then transmitting the data to the user. Additionally, elaborated exploring robot can survey an area of terrain with visual inspection and take samples of soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.