Postoperative patient data sets taken for testing of this data are sourced from the UCI repository on the website https://archive.ics.uci.edu/ml/datasets/Post-Operative+Patient. Based on the website address, the study was conducted by Sharon Summers, School of Nursing, University of Kansas, Medical Center, Kansas City, KS 66160 and Linda Woolery, School of Nursing, University of Missouri, Columbia, MO 6521. Number of attributes from this data set there are 8 and 1 class, the attributes in question include; L-CORE (patient's internal temperature in C), L-SURF (patient's surface temperature in C), L-O2 (oxygen saturation in%), L-BP (last measurement of blood pressure), SURF-STBL (stability of the patient's surface temperature ), CORE-STBL (stability of the patient), BP-STBL (stability of the patient's blood pressure), COMFORT (perceived comfort of the patient at discharge, measured as an integer between 0 and 20) and ADM-DECS decision class / patient exit decision with information (I = patient sent to intensive care unit, S = patient ready to go home, A = patient sent to general hospital floor).
Kota Medan adalah salah satu daerah yang termasuk dalam kategori rawan banjir di Sumatera Utara. Bencana alam ini selalu terjadi setiap tahun ketika memasuki musim penghujan. Tujuan penelitian ini adalah untuk melakukan pemetaan terhadap tingkat kerawanan banjir di Kota Medan. Jenis metode yang digunakan dalam penelitian ini adalah metode kualitatif dengan melihat pengaruh masing-masing parameter banjir untuk mengidentifikasi tingkat kerawanan banjir di Kota Medan. Parameter yang digunakan adalah kemiringan lereng, jenis tanah, dan curah hujan yang kemudian akan diolah dengan metode overlay untuk mendapatkan kelas kerawanan banjir di Kota Medan. Hasil penelitian menunjukkan bahwa persebaran daerah rawan banjir di Kota Medan terdapat diseluruh bagian wilayah yang dikategorikan menjadi empat tingkatan kerawanan yaitu sangat rendah dengan luas 248 Ha, rendah seluas 1.817 Ha, sedang dengan luas sebesar 11.465 Ha, dan kategori tinggi yang memiliki luas 14.037 Ha.
Mangrove forest is the most well known in Langsa City. Mangrove forest has high productivity and rich of biodiversity. However, the mangrove area has decreased in quantity. It caused by human activities (anthropogenic factors) and natural conditions. Aims of this research are to map the spatial distribution of mangrove forest in Langsa City, analyze the changes occurring mangrove area, and identify the factors that leading to the changes. Landsat 5 and Landsat 8 OLI images are selected to represent data with multi temporal images (1996, 2006, 2016, and 2018). This study used the maximum likelihood classification on multispectral data. The result of the research showed the accuracy of Landsat 8 OLI images in 2018 was 62.50%. Mangrove area changes during three periods of observed data, i.ehas decreased to 419.04 ha in 1996-2006, increase to 459.76 ha in 2006-2016, and decreased 330.57 ha in 2016-2018. These changes were generally caused by anthropogenic factors such as logging, garbage buildup, over function of mangrove to café, bridge and settlement. On the other hand, natural factors did not caused the change. Natural factors value in research location are accepted by mangrove growth requirements, i.e water pH was 7.8, temperature was 34°C, salinity was 33.03, and DO (Dissolved Oxygen) was 5.28.
AbstrakWilayah pesisir dan kelautan Indonesia merupakan daerah yang memiliki potensi sumber daya alam yang besar dan dapat dimanfaatkan untuk pembangunan. Sebagai sebuah negara kepulauan terbesar di dunia, Indonesia memiliki 17.508 pulau yang sebagian yaitu 13.466 pulau telah berkoordinat dan bernama, garis pantai sepanjang 99.093 km 2 , dan luas wilayah perairan 6.315.222 km 2 (BIG, 2015). Kelestarian habitat bentikdapatmengalamiperubahan yang disebabkan oleh berbagai factor seperti kecerahan, suhu, salinitas, sedimentasi, pH, dan bencana alam. Faktorfaktor tersebut menjadikan habitat bentik mengalami degradasi hingga mencapai kondisi yang tidak memungkinkan bagi habitat bentik untuk memulihkan kondisinya secara alami. Dahuriet al., AbstractCoastal areas and marine Indonesia is an area that has great natural resource potential and can be utilized for development. As the largest archipelagic country in the world, Indonesia has 17,508 islands of which 13,466 islands have been coordinated and named, 99,093 km2 of coastline, and water area of 6,315,222 km2 (BIG, 2015). The preservation of benthic habitats can lead to changes caused by various factors such as brightness, temperature, salinity, sedimentation, pH, and natural disasters. These factors make the benthic habitat degraded until it reaches a condition that does not allow the benthic habitat to restore its condition naturally. Dahuriet al., 1996in Supriharyono, 2000 suggests levels of quality that are acceptable to benthic habitats, ie pH (6.8-7.5), temperature (250-300), and salinity (340 / 00-360 / 0). This research gives the result that pH content has average value that is 8.14, sea surface temperature has average value that is 29.260C, salinity sea water has average value that is 360/00, where the average value of water quality level is the maximum value that the benthic habitat can tolerate.
One of the most attractive ecosystems to be used as tourist destinations is coral reefs. The coral reef ecosystem on Weh Island, Aceh, Indonesia is one of the coastal ecosystems that have a strategic role in ecological and economic development. One of the ecological and economic development efforts can be done through marine tourism. This study aims to analyze the distribution of coral reefs to develop marine tourism in Weh Island. This study uses Landsat 8 OLI image data and field observations. The technique used in this research is the image data analysis technique using multispectral classification. The results showed that the coral reefs on Weh Island in 2020 amounted to 13,136,000 Ha. Therefore, the development of marine tourism must create tourism zones to maintain the sustainability of coral reef ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.