Abstract. This paper presents a first assessment of the hydrometeorological potential of a C-band doppler weather radar recently installed by the Royal Meteorological Institute of Belgium near the village of Wideumont in the southern Ardennes region. An analysis of the vertical profile of reflectivity for two contrasting rainfall events confirms the expected differences between stratiform and convective precipitation. The mean areal rainfall over the Ourthe catchment upstream of Tabreux estimated from the Wideumont weather radar using the standard Marshall-Palmer reflectivity-rain rate relation shows biases between +128% and −42% for six selected precipitation events. For two rainfall events the radar-estimated mean areal rainfall is applied to the gaugecalibrated (lumped) HBV-model for the Ourthe upstream of Tabreux, resulting in a significant underestimation with respect to the observed discharge for one event and a closer match for another. A bootstrap analysis using the radar data reveals that the uncertainty in the hourly discharge from the ∼1600 km 2 catchment associated with the sampling uncertainty of the mean areal rainfall estimated from 10 rain gauges evenly spread over the catchment amounts to ±25% for the two events analyzed. This uncertainty is shown to be of the same order of magnitude as that associated with the model variables describing the initial state of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.