Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed -galactomannan (GM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and GM inhibited the association of Salmonella with IECs in vitro. Our data indicated that GM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-␣], interleukin-1␣ [IL-1␣], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, GM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: GM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-␣, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of GM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-␣, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of GM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.
Salmonella enterica serovar Enteritidis is one of the leading causes of food-borne salmonellosis in humans. Poultry is the single largest reservoir, and the consumption of incorrectly processed chicken meat and egg products is the major source of infection. Since 2006, the use of antibiotics as growth promoters has been banned in the European Union, and the dietary inclusion of β-galactomannans (βGM) has become a promising strategy to control and prevent intestinal infections. The aim of this study was to investigate the effect of various βGM-rich products on intestinal morphology in chickens challenged with Salmonella Enteritidis. To assess this effect, a total of 280 male Ross 308 chickens were studied (40 animals per treatment housed in 5 cages). There were 7 treatments, including controls: uninoculated birds fed the basal diet (negative control) and inoculated birds fed the basal diet (positive control) or the basal diet supplemented with Salmosan (1 g/kg), Duraió gum (1 g/kg), Cassia gum (1 g/kg), the cell walls of Saccharomyces cerevisiae (0.5 g/kg), or the antibiotic colistine (0.8 g/kg). The birds were fed these diets from the d 1 to 23, except the animals in the colistine group, which were fed the diet containing the antibiotic only from d 5 to 11. The inoculated animals were orally infected on d 7 with 10(8) cfu of Salmonella Enteritidis. Bird performance per replicate was determined for the whole study period (23 d), and the distal ileum and cecal tonsil of 5 animals per treatment (1 animal per replicate) were observed at different magnification levels (scanning electron, light, and laser confocal microscopy). In the images corresponding to the treatments containing βGM we observed more mucus, an effect that can be associated with the observation of more goblet cells. Moreover, the images also show fewer M cells, which are characteristic of infected animals. Regarding the morphometric parameters, the animals that received Duraió and Cassia gums show greater (P = 0.001 and P = 0.016, respectively) villus length compared with the animals in the positive control, thus indicating the capacity of these products to increase epithelial surface area. However, no effect (P > 0.05) on microvillus dimensions was detected. In conclusion, the results obtained indicating the beneficial effects of these βGM on intestinal morphology give more evidence of the positive effects of these supplements in poultry nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.