The total synthesis of apoptolidin A is described employing an early glycosylation strategy. Strategic disconnections were chosen between C11-C12 (cross-coupling) and C19O-C1 (macrocyclization). The cis-selective glycosylation at C9-OH was achieved with the new SIBA protective group at O2/O3 of the L-glucose residue. Auxiliary substitutents at the 2-position of the 2-deoxy sugars were applied to form selectively the glycosidic linkages of the C27 disaccharide. The cross-coupling of the glycosylated northern half with the glycosylated southern half was achieved with CuI-thiophene carboxylate. The macrocyclization of a trihydroxy carboxylic acid produced the 20-membered macrolide selectively. H2SiF6 was suitable for the final deprotection of the silyl ethers and the conversion of the C21 methylketal into the hemiketal. The synthetic flexibility of the approach was proven by the synthesis of some glycovariants.
A ring‐size‐selective macrolactonization and the early introduction of the saccharide portions are the main features of a total synthesis of the 20‐membered macrolide apoptolidin (see formula), which induces apoptosis in rat glia cells transformed with oncogenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.