Power electronic applications require components with highly efficient switching capabilities. The switching imposes electrical and thermal stresses on the components especially when defects occur. So it is necessary to know the extreme working limits for different loads. The aim of this paper is to analyse the short‐circuit behavior of the electrothermal insulated gate bipolar transistor (IGBT). The electrothermal modeling is based on the physical approach of the semi‐conductor fundamental equations and the thermal equation. The transport phenomena are described using the classical drift–diffusion model. Advanced mobility models taking into account the high electric field and the semi‐conductor surface effects have been used in the transport equations. The simulations have been carried out on a basic cell of the IGBT, using Davinci software. Simulations and experiments show that two destructive phenomena are possible: an immediate failure and a delayed break. The delayed break has been analysed using current, electric field, carrier concentration and temperature curves. In this case, the break is initiated by a thermal mechanism. The characteristics of this mechanism have been analysed and discussed. Electrical and thermal influences have been studied separately. The origin of the destructive phenomena is interpreted by a self‐supply mechanism of the parasitic transistor.
Cet article décrit le comportement électrothermique d'un IGBT en court‐circuit. Le composant a été modélisé par approche physique: modèles de mobilité et équations générales des semiconducteurs. Les simulations électrothermiques du composant pendant la phase de court‐circuit ont mis en évidence plusieurs types des comportements possibles suivant la durée du court‐circuit: retour à l'équilibre ou destruction (immédiate ou retardée). Cette étude montre en outre l'influence des différents paramètres physiques (température, mobilités, densités de porteurs, durées de vie) sur le comportement du dispositif pendant cette phase. L'étude expérimentale du court‐circuit, menée dans des conditions les plus proches possible de celles des simulations et éventuellement jusqu'à destruction du composant, permet de déterminer ses limites ultimes de fonctionnement (courant, tension, durée du court‐circuit) et confirme l'approche de modélisation proposée.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.