In case of transtibial amputation, the deficit resulting from the loss of the lower limb can be partly compensated with a prosthetic foot and adapted rehabilitation. New prosthetic feet have been developed for transtibial amputees to mimic ankle adaptability to varying terrain. Among them, Microprocessor Prosthetic Ankles (MPA) have a microprocessor to control an electric or a hydraulic actuator to adapt ankle kinematics in stairs and slopes. The objective is to investigate parameters extracted from the moment-angle curve (MAC) and use them to compare 3 MPA during level and slope locomotion against energy storing and return (ESR) foot. Five persons with lower limb transtibial amputation successively fitted with 3 MPA (Propriofoot™, Elan™, Meridium™) compared to their ESR foot. The participants had 2 weeks of adaptation before data acquisition and then a 3 week wash-out period. Range of motion, equilibrium point, hysteresis, late stance energy released, and quasi-stiffness were computed on level ground and 12% slope (upward and downward) thanks to the MAC at the ankle. The study shows the relevance of MAC parameters to evaluate the behavior of MPA. In particular, compared to ESR, all MPA tested in the present study demonstrated a better angle adaptation between walking conditions but a decrease of available energy for the propulsion. Among MPA, main results were: (i) for the Propriofoot™: an adaptation of the ankle angle without modification of the pattern of the MAC (ii) for the Elan™: a limited adaptation of the range of motion but a modification of the energy released (iii) for the Meridium™, the highest adaptation of the range of motion but the lowest available energy of propulsion. One of the main findings of the research is to show and quantify the relationship between range of motion and energy available when using different prosthetic feet in different walking conditions.
Background: The compensations occurrence due to the alteration of the posture and the gait of persons with lower limb amputation is still an issue in prosthetic fitting. Recently, prosthetic feet designed to reproduce the physiological behaviour of the ankle using a microprocessor control have been commercialized to address this issue. Objectives: Investigate the relevance of these microprocessor prosthetic ankles (MPAs) in the ability of standing on both level and inclined surfaces. Methods: Six persons with transtibial amputation usually fitted with energy storing and returning (ESR) foot tested three MPAs: Elan V R Endolite (MPA1), Meridium V R Ottobock (MPA2), ProprioFoot V R Ossur (MPA3). Each MPA data acquisition was preceded of a 2 weeks adaptation period at home and followed by a 3weeks wash-out period with their ESR. Lower limb angular position and moment, Centre of Pressure (CoP) position, Ground Reaction Forces (GRF) and functional scores were collected in static, on level ground and 12% inclined slope. Results: MPAs allowed a better posture and a reduction of residual knee moment on positive and/or negative slope compared to ESR. Results also reflect that the MPA2 allows the best control of the CoP in all situations. Conclusions: An increased ankle mobility is associated with a better posture and balance on slope. Gait analysis would complete these outcomes. Clinical relevance: This study compares three MPAs to ESR analysing static posture. Static analysis on level ground and slope represents the challenging conditions people with amputation have to cope with in their daily life, especially outdoors. Having a better understanding of the three MPAs behaviour could help to adequately fit the prosthesis to each patient.
Purpose This study aims to describe the spinopelvic sagittal alignment in transfemoral amputees (TFAs) from a radiologic study of the spine with a postural approach to better understand the high prevalence of low back pain (LBP) in this population. Methods TFAs underwent X-rays with 3-D reconstructions of the full spine and pelvis. Sagittal parameters were analyzed and compared to the literature. Differences between TFAs with and without LBP were also observed. Results Twelve subjects have been prospectively included (TFA-LBP group (n = 5) and TFA-NoP group (n = 7)). Four of the five subjects of the TFA-LBP group and two of the seven in TFAs-NoP group had an imbalanced sagittal posture, especially regarding the T9-tilt, significantly higher in the TFA-LBP group than in the TFA-NoP (p = 0.046). Eight subjects (6 TFA-NoP and 2 TFA-LBP) had abnormal low value of thoracic kyphosis (TK). Moreover, the mean angle of TK in the TFA-NoP group was lower than in the TFA-LBP group (p = 0.0511). Conclusion In the considered sample, TFAs often present a sagittal imbalance. A low TK angle seems to be associated with the absence of LBP. It can be hypothesized that this compensatory mechanism of the sagittal imbalance is the most accessible in this population. This study emphasizes the importance of considering the sagittal balance of the pelvis and the spine in patients with a TFA to better understand the high prevalence of LBP in this population. It should be completed by the analysis of the spinopelvic balance and the lower limbs in 3D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.