A wave of follicular growth in lamb ovaries occurs at about 4 weeks of age, generating a life-time peak in follicle numbers. In order to take advantage of the large number of oocytes available, and to substantially decrease the generation interval, embryos were derived from oocytes collected from 1-mo-old lambs. Animals were subjected to one of 3 regimes of hormonal stimulation: groups 1 and 2 were treated to obtain germinal vesicle-stage oocytes, and group 3 to produce mature metaphase II oocytes. Adult sheep stimulated by an appropriate dose of FSH served as control. The developmental ability of collected oocytes was evaluated by either in vivo or in vitro culture to the blastocyst stage after in vitro maturation and/or fertilization. Blastocysts were transferred immediately or after cryopreservation to suitable recipient sheep. In order to investigate the full developmental potential of these embryos, pregnancies were allowed to go to term. The results show significant differences (P < 0.001) between all experimental groups in blastocyst numbers produced. Embryos derived from group 1 animals produced the greatest number of blastocysts, under both in vivo (36. 7%), and in vitro (22.9%) culture systems. Group 2 gave lowest blastocyst production (5.0%), while group 3 yielded 13.2% blastocysts. The number of pregnant recipients carrying to term lamb-derived embryos was severely reduced for both in vivo- (2 of 9; 22.2%) and in vitro-cultured, fresh (3 of 10; 30.0%) and cryopreserved (1 of 6; 16.7%) lamb embryos. This study is the first report of the birth of live lambs derived from oocytes obtained from donors as young as 4 wk. Defects in the competence of lamb-derived embryos may account for the increased fetal loss during pregnancy and the occurrence of mummified fetuses delivered alongside normal healthy lambs.
Although the potential use of reproductive biotechnologies for safeguarding endangered wildlife species is undoubted, practical efforts have met with limited success to date. In those instances in which modern technologies have been adapted to rescuing rare or endangered species, procedures have been applied piecemeal, and no consistent breeding program based on reproductive biotechnologies has been undertaken. Here we describe for the first time the rescue of an endangered species, the European mouflon (Ovis orientalis musimon), by the application of an integrated package of reproductive biotechnologies. This genetic management extended from the initial collection of gametes, through the in vitro production of embryos and interspecific transfer, to the birth of healthy mouflon offspring. In addition, a genetic resource bank for the European mouflon was established, with cryopreserved sperm, embryos, and somatic cells.
Recently developed, assisted reproductive technologies (e.g., in vitro embryo production and nuclear transfer) have encountered perinatal morbidity/mortality of the offspring produced, which are likely to hinder the application of these techniques. Consequently we have sought to develop a system of hormonal stimulation that will ensure the delivery of offspring more prepared for extrauterine life. Here we examine deliveries outcome in sheep carrying in vitro-produced and nuclear transfer (NT) embryos in comparison to artificially inseminated and naturally mated control ewes. All groups (excluding NT, which received one treatment) were subjected to one of two hormonal treatments for induction of delivery, whereas the third part of each group was left without any treatment. The first (commonly used for naturally mated ewes) dexamethasone treatment did not solve a majority of parturition disturbances, and actually the number of deliveries necessitating assistance was reduced (P < 0.05) by this treatment in the control group. On the other hand, combined estradiol plus betamethasone stimulation (E + B) solved a majority of complications regarding delivery performance such as lack of the preparation of the mammary gland, low myometrial contractility, insufficient cervical ripening, and impaired maternal behavior. Moreover, substantial reduction of neonatal mortality was observed following the combined treatment. In conclusion, the E + B induction of delivery overcame the majority of physiological and behavioral intrapartum failures of sheep foster mothers and increased the survival of offspring, and thus can be recommended as a safe method for inducing delivery in foster mothers carrying in vitro-generated embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.