LiteBIRD the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2 μK-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. Subject Index LiteBIRD cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravitational waves, quantum gravity, space telescope
We report the first half-year monitoring of the new Galactic black hole candidate MAXI J1348–630, discovered on 2019 January 26 with the Gas Slit Camera on board the Monitor of All-sky X-ray Image (MAXI). During the monitoring period, the source exhibited two outburst peaks, where the first peak flux (at T = 14 days from the discovery of T = 0) was ∼4 Crab (2–20 keV) and the second one (at T = 132 days) was ∼0.4 Crab (2–20 keV). The source exhibited distinct spectral transitions between the high/soft and low/hard states and an apparent “q”-shape curve on the hardness-intensity diagram, both of which are well-known characteristics of black hole binaries (BHBs). Compared to other bright black hole transients, MAXI J1348–630 is characterized by its low disk temperature (∼0.75 keV at the maximum) and high peak flux in the high/soft state. The low peak temperature leads to a large innermost radius that is identified as the innermost stable circular orbit, determined by the black hole mass and spin. Assuming the empirical relation between the soft-to-hard transition luminosity (L trans) and the Eddington luminosity (L Edd), L trans/L Edd ≈ 0.02, and a face-on disk around a non-spinning black hole, the source distance and the black hole mass are estimated to be D ≈ 4 kpc and , respectively. The black hole is more massive if the disk is inclined and the black hole is spinning. These results suggest that MAXI J1348–630 may host a relatively massive black hole among the known BHBs in our Galaxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.