The link between the nucleon generalized parton distributions and the non-diagonal one-body density matrix in momentum space is studied. Attention is focussed on the region where quark generalized parton distributions (GPD's) describe emission and reabsorption of a single active quark by the target nucleon. The correct covariant connection with wave functions used in any constituent quark model is established. Results obtained with different constituent quark models are presented for the unpolarized quark GPD's.
An explicit evaluation of the double parton distribution functions (dPDFs), within a relativistic Light-Front approach to constituent quark models, is presented. dPDFs encode information on the correlations between two partons inside a target and represent the non-perturbative QCD ingredient for the description of double parton scattering in proton-proton collisions, a crucial issue in the search of new Physics at the LHC. Valence dPDFs are evaluated at the low scale of the model and the perturbative scale of the experiments is reached by means of QCD evolution. The present results show that the strong correlation effects present at the scale of the model are still sizable, in the valence region, at the experimental scale. At the low values of x presently studied at the LHC the correlations become less relevant, although they are still important for the spin-dependent contributions to unpolarized proton scattering.
Using a simple picture of the constituent quark as a composite system of point-like partons, we construct the parton distributions by a convolution between constituent quark momentum distributions and constituent quark structure functions. We evaluate the latter at a low hadronic scale with updated phenomenological information, and we build the momentum distributions using well-known quark models. The resulting parton distributions and structure functions are evolved to the experimental scale and good agreement with the available DIS data is achieved. When compared with a similar calculation using non-composite constituent quarks, the accord with experiment of the present calculation becomes impressive. We therefore conclude that DIS data are consistent with a low energy scenario dominated by composite, mainly non-relativistic constituents of the nucleon.
We present a consistent calculation of the structure functions within a light-front constituent quark model of the nucleon. Relativistic effects and the relevance of the covariance constraints are analyzed for polarized parton distributions. Various models, which differ in their gluonic structure at the hadronic scale, are investigated. The results of the full covariant calculation are compared with those of a non-relativistic approximation to show the structure and magnitude of the differences. It is also shown how measurements of transversity in doubly polarized Drell-Yan lepton pair production are a clearcut sign of covariance requirements for the spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.