BackgroundMali is endemic for all five targeted major neglected tropical diseases (NTDs). As one of the five ‘fast-track’ countries supported with the United States Agency for International Development (USAID) funds, Mali started to integrate the activities of existing disease-specific national control programs on these diseases in 2007. The ultimate objectives are to eliminate lymphatic filariasis, onchocerciasis and trachoma as public health problems and to reduce morbidity caused by schistosomiasis and soil-transmitted helminthiasis through regular treatment to eligible populations, and the specific objectives were to achieve 80% program coverage and 100% geographical coverage yearly. The paper reports on the implementation of the integrated mass drug administration and the lessons learned.Methodology/Principal FindingsThe integrated control program was led by the Ministry of Health and coordinated by the national NTD Control Program. The drug packages were designed according to the disease endemicity in each district and delivered through various platforms to eligible populations involving the primary health care system. Treatment data were recorded and reported by the community drug distributors. After a pilot implementation of integrated drug delivery in three regions in 2007, the treatment for all five targeted NTDs was steadily scaled up to 100% geographical coverage by 2009, and program coverage has since been maintained at a high level: over 85% for lymphatic filariasis, over 90% for onchocerciasis and soil-transmitted helminthiasis, around 90% in school-age children for schistosomiasis, and 76–97% for trachoma. Around 10 million people have received one or more drug packages each year since 2009. No severe cases of adverse effects were reported.Conclusions/SignificanceMali has scaled up the drug treatment to national coverage through integrated drug delivery involving the primary health care system. The successes and lessons learned in Mali can be valuable assets to other countries starting up their own integrated national NTD control programs.
BackgroundRecently, a number of Global Health Initiatives (GHI) have been created to address single disease issues in low-income countries, such as poliomyelitis, trachoma, neonatal tetanus, etc.. Empirical evidence on the effects of such GHIs on local health systems remains scarce. This paper explores positive and negative effects of the Integrated Neglected Tropical Disease (NTD) Control Initiative, consisting in mass preventive chemotherapy for five targeted NTDs, on Mali's health system where it was first implemented in 2007.Methods and FindingsCampaign processes and interactions with the health system were assessed through participant observation in two rural districts (8 health centres each). Information was complemented by interviews with key informants, website search and literature review. Preliminary results were validated during feedback sessions with Malian authorities from national, regional and district levels. We present positive and negative effects of the NTD campaign on the health system using the WHO framework of analysis based on six interrelated elements: health service delivery, health workforce, health information system, drug procurement system, financing and governance. At point of delivery, campaign-related workload severely interfered with routine care delivery which was cut down or totally interrupted during the campaign, as nurses were absent from their health centre for campaign-related activities. Only 2 of the 16 health centres, characterized by a qualified, stable and motivated workforce, were able to keep routine services running and to use the campaign as an opportunity for quality improvement. Increased workload was compensated by allowances, which significantly improved staff income, but also contributed to divert attention away from core routine activities. While the campaign increased the availability of NTD drugs at country level, parallel systems for drug supply and evaluation requested extra efforts burdening local health systems. The campaign budget barely financed institutional strengthening. Finally, though the initiative rested at least partially on national structures, pressures to absorb donated drugs and reach short-term coverage results contributed to distract energies away from other priorities, including overall health systems strengthening.ConclusionsOur study indicates that positive synergies between disease specific interventions and nontargeted health services are more likely to occur in robust health services and systems. Disease-specific interventions implemented as parallel activities in fragile health services may further weaken their responsiveness to community needs, especially when several GHIs operate simultaneously. Health system strengthening will not result from the sum of selective global interventions but requires a comprehensive approach.
BackgroundInsects play an important role as a diet supplement in Burkina Faso, but the preferred insect species vary according to the phytogeographical zone, ethnic groups, and gender. The present study aims at documenting indigenous knowledge on edible insects in Burkina Faso.MethodsA structured ethno-sociological survey was conducted with 360 informants in nine villages located in two phytogeographical zones of Burkina Faso. Identification of the insects was done according to the classification of Scholtz. Chi-square tests and principal component analysis were performed to test for significant differences in edible insect species preferences among phytogeographical zones, villages, ethnic groups, and gender.ResultsEdible insects were available at different times of the year. They were collected by hand picking, digging in the soil, and luring them into water traps. The edible insects collected were consumed fried, roasted, or grilled. All species were indifferently consumed by children, women, and men without regard to their ages. A total of seven edible insect species belonging to five orders were cited in the Sudanian zone of Burkina Faso. Macrotermes subhyalinus (Rambur), Cirina butyrospermi (Vuillet, 1911), Kraussaria angulifera (Krauss, 1877), Gryllus campestris (Linnaeus, 1758), and Carbula marginella (Thunberg) (35.66–8.47% of the citations) were most cited whereas Rhynchophorus phoenicis (Fabricius, 1801) and Oryctes sp. (3.41–0.27%) were least cited. Cirina butyrospermi was most cited in the South Sudanian zone, whereas Macrotermes subhyalinus and Kraussaria angulifera were most cited in the North Sudanian zone but were cited in all nine villages. Cirina butyrospermi was preferred by Bobo, Guin, Sambla, Senoufo, and Turka ethnic groups whereas Macrotermes subhyalinus was preferred by Fulani, Mossi, and Toussian ethnic groups. Oryctes sp. was cited only by the Toussian.ConclusionA diversity of edible insects was consumed in both the South and North Sudanian zone of Burkina Faso with significant differences in species preferences according to phytogeographical zones, villages, ethnic groups, and gender.
The effect of contamination of rice seedlings by Rice yellow mottle virus (RYMV) in seedbeds on the onset and spread of rice yellow mottle in the field was investigated. Rice seedlings were artificially contaminated in seedbeds at different rates (0.1, 0.5, and 2.5%) and pooled in bundles before transplantation, as done by farmers. RYMV was successfully transmitted through contaminated hands and bundling healthy and diseased seedlings together. Hand contamination was responsible for 4.5% infection. Disease incidence in the field after secondary spread reached 32% for 2.5% seedbed contamination rate but remained limited (less than 10%) for all other rates. Eradicating infected plants from seedbeds lessened disease incidence in the field. This technique may be used in conjunction with other prophylactic measures to efficiently control rice yellow mottle disease.
The roles of guttation fluid, irrigation water, contact between plants and transplantation into contaminated soil in the transmission of Rice yellow mottle virus (RYMV) were assessed. RYMV presence and infectivity were tested by Enzyme-Linked Immunosorbent Assay (ELISA) and by inoculation to susceptible rice cultivar BG90-2. The virus was readily detected in guttation fluid collected from infected rice plants. Transmission tests from this fluid led to high disease incidence (86.6%). Irrigation water collected at the base of infected plants growing in pots was less infectious, as inoculations led to disease incidences below 40%. No virus was detected and could be transmitted from field-irrigation water. Up to 44% healthy rice plants whose leaves were in contact with those of infected plants became infected but, no transmission occurred through intertwined roots. Transplantation of rice seedling into virus-contaminated soil also led to plant infection. However, virus survival in the soil decrease rapidly and infectivity was completely lost 14 days after soil contamination. Altogether, these results indicated that high planting densities of rice are likely to favour secondary spread of rice yellow mottle disease. Transplantation of rice seedlings not earlier than 2 weeks after soil preparation should prevent soil transmission of the virus. Although guttation fluid is highly infectious its contribution to virus infectivity in irrigation water is negligible as field-irrigation water was not found to be an infectious source for RYMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.