Recent trends and challenges for the emerging materials class of microporous polymers are reviewed. See the main article for graphical abstract image credits.
A modified one-pot Sonogashira cross-coupling reaction based on a copper-free methodology has been applied for the synthesis of conjugated microporous poly(aryleneethynylene) networks (CMPs) from readily available iodoarylenes and 1,3,5-triethynylbenzene. The polymerization reactions were carried out by using equimolar amounts of halogen and terminal alkyne moieties with extremely small loadings of palladium catalyst as low as 0.65 mol %. For the first time, CMPs with rigorously controlled structures were obtained without any indications of side reactions, as proven by FTIR and solid-state NMR spectroscopy, while showing Brunauer-Emmett-Teller (BET) surface areas higher than any poly(aryleneethynylene) network reported before, reaching up to 2552 m(2) g(-1) .
Porous polymer networks based on sterically encumbered triphenylphosphine motifs, mimicking the basic sites employed in frustrated Lewis pair (FLP) chemistry, were synthesized via Yamamoto polymerization and their interactions with the strong Lewis acid B(CF) probed. The combinations yield semi-immobilized FLPs, which are able to cleave dihydrogen heterolytically at ambient temperature and low hydrogen pressure.
Metal-free 2D covalent organic materials transport charges along and in-between π-conjugated layers. Here, we look at the prospects of graphitic carbon nitrides and covalent organic frameworks as 2D semiconductors “beyond graphene and silicon”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.