A new search for the diffuse supernova neutrino background (DSNB) flux has been conducted at Super-Kamiokande (SK), with a 22.5 × 2970-kton•day exposure from its fourth operational phase IV. The new analysis improves on the existing background reduction techniques and systematic uncertainties and takes advantage of an improved neutron tagging algorithm to lower the energy threshold compared to the previous phases of SK. This allows for setting the world's most stringent upper limit on the extraterrestrial νe flux, for neutrino energies below 31.3 MeV. The SK-IV results are combined with the ones from the first three phases of SK to perform a joint analysis using 22.5 × 5823 kton•days of data. This analysis has the world's best sensitivity to the DSNB νe flux, comparable to the predictions from various models. For neutrino energies larger than 17.3 MeV, the new combined 90% C.L. upper limits on the DSNB νe flux lie around 2.7 cm −2 •sec −1 , strongly disfavoring the most optimistic predictions. Finally, potentialities of the gadolinium phase of SK and the future Hyper-Kamiokande experiment are discussed.
We present a search for an excess of neutrino interactions due to dark matter in the form of weakly interacting massive particles (WIMPs) annihilating in the Galactic center or halo based on the data set of
Citation: C Simpson et al. "Sensitivity of Super-Kamiokande with gadolinium to low energy antineutrinos from pre-supernova emission.Abstract Supernova detection is a major objective of the Super-Kamiokande (SK) experiment. In the next stage of SK (SK-Gd), gadolinium (Gd) sulfate will be added to the detector, which will improve the ability of the detector to identify neutrons. A core-collapse supernova (CCSN) will be preceded by an increasing flux of neutrinos and antineutrinos, from thermal and weak nuclear processes in the star, over a timescale of hours; some of which may be detected at SK-Gd. This could provide an early warning of an imminent CCSN, hours earlier than the detection of the neutrinos from core collapse. Electron antineutrino detection will rely on inverse beta decay events below the usual analysis energy threshold of SK, so Gd loading is vital to reduce backgrounds while maximizing detection efficiency. Assuming normal neutrino mass ordering, more than 200 events could be detected in the final 12hr before core collapse for a 15-25 solar mass star at around 200pc, which is representative of the nearest red supergiant to Earth, α-Ori (Betelgeuse). At a statistical false alarm rate of 1percentury, detection could be up to 10hr before core collapse, and a pre-supernova star could be detected by SK-Gd up to 600pc away. A presupernova alert could be provided to the astrophysics community following gadolinium loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.