This study presents an experimental investigation on the effects of winglets on the near wake flow around the tip region and on the tip vortex characteristics downstream of a 0.94 m diameter three-bladed horizontal axis wind turbine (HAWT) rotor. Phase-locked 2D particle image velocimetry (PIV) measurements are performed with and without winglets covering 120 deg of azimuthal progression of the rotor. The impact of using winglets on the flow field near the wake boundary as well as on the tip vortex characteristics such as the vortex convection, vortex core size, and core expansion as well as the resultant induced drag on the rotor are investigated. Results show that winglets initially generate an asymmetric co-rotating vortex pair, which eventually merge together after about ten tip chords downstream to create a single but nonuniform vortex structure. Mutual induction of the initial double vortex structure causes a faster downstream convection and a radially outward motion of tip vortices compared to the baseline case. The wake boundary is shifted radially outward, velocity gradients are diffused, and vorticity and turbulent kinetic energy levels are significantly reduced across the wake boundary. The tip vortex core sizes are three times as big compared to those of the baseline case, and within the vortex core, vorticity and turbulent kinetic energy levels are reduced more than 50%. Results show consistency with various vortex core and expansion models albeit with adjusted model coefficients for the winglet case. The estimated induced drag reduction is about 15% when winglets are implemented.
This study presents the results of an experimental investigation focusing on the effects of the inflow boundary layer on the wake characteristics of a 0.12 m diameter porous disk with radially non-uniform porosity in terms of mean flow, turbulence, and wake scaling. Two-dimensional two-component particle image velocimetry measurements within the wake are performed up to 7.5 diameters downstream as the disk is lowered deeper into a boundary layer that is representative of a neutral atmospheric boundary layer over a flat terrain. Results show that otherwise symmetrical wake velocity profiles that exist outside the boundary layer get skewed and sheared around the disk centerline in the boundary layer due to the inflow wind shear. The turbulent kinetic energy, its production, and Reynolds shear stress levels in the wake get asymmetrical around the centerline of the disk such that the production of turbulent kinetic energy is observed to be higher above centerline. Due to the inflow shear, the wake centerline gets shifted downwards (i.e., toward the wind tunnel wall), which is in contrast to the observations on real wind turbine wakes in the literature where the wake actually lifts up. The asymmetrical and skewed velocity profiles both in the streamwise and cross-stream directions can be collapsed onto a single function by using proper wake scaling parameters based on the ratio of local strain to average strain within the velocity profile calculated separately for either side of the wake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.