The conventional seismic trace can be viewed as the real component of a complex trace which can be uniquely calculated under usual conditions. The complex trace permits the unique separation of envelope amplitude and phase information and the calculation of instantaneous frequency. These and other quantities can be displayed in a color‐encoded manner which helps an interpreter see their interrelationship and spatial changes. The significance of color patterns and their geological interpretation is illustrated by examples of seismic data from three areas.
We present the results of a high resolution 3D seismic survey acquired in the western Erzgebirge near the city of Schneeberg. The project aims at imaging a major fault zone in crystalline rock at a depth of 4-5 km with expected temperatures between 160 and 180°C, which is supposed to be used as a natural geothermal heat exchanger. We applied advanced imaging methods to the data set. 3D Kirchhoff prestack depth migration delivered a clear structural image of the various fault branches at depths of around 2-5 km. Furthermore we applied the focusing coherency migration method, which uses a coherency function of the data recorded at neighboring traces for imaging. This method even sharpened the image such that the 3D seismic result allows for a profound characterization of this potential geothermal reservoir in crystalline rock.
Multifold ground coverage by seismic techniques such as the common reflection point method provides a multiplicity of wave travel path information which allows direct determination of root‐mean‐square velocities associated with such paths. Hyperbolic searches for semblance among appropriately gathered arrays of traces form the basis upon which velocities are estimated. Measured semblances are presented as a velocity spectral display. Interpretation of this information can give velocities with meaningful accuracy for primary as well as multiple events. In addition, the velocity data can help correctly label events. This paper outlines the fundamental principles for calculating velocity spectra displays. Examples are included which demonstrate the depth and detail of geological information which may be obtained from the interpretation of such displays.
Small geologic features manifest themselves in seismic data in the form of diffracted waves, which are fundamentally different from seismic reflections. Using two field-data examples and one synthetic example, we demonstrate the possibility of separating seismic diffractions in the data and imaging them with optimally chosen migration velocities. Our criteria for separating reflection and diffraction events are the smoothness and continuity of local event slopes that correspond to reflection events. For optimal focusing, we develop the local varimax measure. The objectives of this work are velocity analysis implemented in the poststack domain and high-resolution imaging of small-scale heterogeneities. Our examples demonstrate the effectiveness of the proposed method for high-resolution imaging of such geologic features as faults, channels, and salt boundaries.
Amplitudes of seismic reflections have been of interest since the first days of exploration seismology. Any change of amplitude or anomalous behavior may be significant, so it is important that the zones of interest be free from outside disturbances, such as those caused by the near‐surface layers. Surface consistent factors may be divided into source, receiver, offset, and subsurface components, and these may be divided further into amplitude and phase (or time shift) factors. Correction of trace amplitudes using multiplication by a scale factor is similar to correction of phase distortions by a static shift, and both corrections enhance seismic data. Displays of surface consistent components for time and amplitude corrections provide an additional diagnostic for the geophysicist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.