Possible interactions between polymerized (F-) actin and insulin-storage granules from rat islets of Langerhans were examined in vitro by comparing the sedimentation of the granules in the presence of various actin concentrations. Actin in the concentration range 0.1--0.5 mg/ml produced a retardation in granule-sedimentation rates consistent with binding of the granules to the actin filaments. The interaction was increased by addition of ATP (2mM), but was decreased by CaCl2 (0.1 mM). Binding of granules to actin was unaffected by cyclic AMP or by preincubation of the granules with phospholipase C. Specificity of the interaction was confirmed by the use of depolymerized (G-) actin and of myosin to provide a solution of comparable viscosity; neither of these caused any alteration of granule sedimentation. Possible implications of this interaction of insulin-storage granules with actin for the mechanism of insulin secretion are briefly discussed.
Progesterone and oestradiol did not alter rates of insulin secretion from isolated rat islets of Langerhans during a 60 min period of incubation in vitro. However, islets isolated from rats which had been injected daily for 15 days with progesterone (5 mg) and oestradiol (5 Ixg) showed enhanced rates of insulin secretion in response to stimulation by 20 mmol/1 glucose or 6 and 20 mmol/1 glucose plus 5 mmol/1 theophylline. Islets from rats which had been injected with the slow-releasing depot progesterone derivative, hydroxyprogesterone hexanoate, 3 times in 15 days, also showed enhanced rates of insulin release in the absence of any alteration in adenylate cyclase activity. In neither experiment could increased food intake, blood glucose levels or islet insulin content account for the observed changes. The possibility of a direct effect of progesterone on the secretory process was investigated in islets which had been cultured for 20 h with progesterone and oestradiol; these islets were then subjected to a variety of stimuli for secretion. They responded significantly more to glucose (6 or 20 mmol/1) in the presence of theophylline (5 mmol/l), while their insulin content was not significantly different from control islets cultured for a similar period. Islets cultured for 20 h in the presence of progesterone and oestradiol did not show any change in their adenylate cyclase activities. Similarly, direct addition of progesterone and oestradiol to islet homogenates did not alter the adenylate cyclase activity during a 30 minute incubation. These results suggest that progesterone and oestradiol affect insulin secretion directly, by a mechanism which does not involve acti;cation of adenylate cyclase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.