Abstract-Balloon Kyphoplasty uses an inflatable bone tamp and cement augmentation to repair vertebral compression fractures. A recent clinical study observed a 78% re-collapse rate in patients showing a radiolucent phenomenon at the bonecement interface following Kyphoplasty. Two experimental studies showed significant height loss following Balloon Kyphoplasty under cyclical loads. The present study investigates the alteration in load angle corresponding to this height loss and its effect on load transfer to the bone-cement interface. A validated finite element model of a human thoracolumbar spine was segmented into a single L1 vertebral body and modified to replicate bilateral Balloon Kyphoplasty. Cement was modeled using prolate spheroids surrounded by an interface region divided into anterior, middle and posterior sections. Interface thickness was calculated using a mathematical model with a bone volume fraction of 0.3 and 50% bone compaction. An 800N load was applied at angles of 0 o and 20 o from the vertebral axis. Results indicate that a change in the applied load angle significantly alters the principal stress components and directions across the interface region. This alteration in loading must be considered in the context of the highly compliant interface region and therefore is hypothesized to be a contributory factor to vertebral recollapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.