Self-assembly of extended structures via cross-linking of individual biomolecules often occurs in solutions at concentrations well below the estimated threshold for random cross-link percolation. This requires solute-solute correlations. Here we study bovine serum albumin. Its unfolding causes the appearance of an instability region of the sol, not observed for native bovine serum albumin. As a consequence, spinodal demixing of the sol is observed. The thermodynamic phase transition corresponding to this demixing is the determinative symmetry-breaking step allowing the subsequent occurrence of (correlated) cross-linking and its progress up to the topological phase transition of gelation. The occurrence of this sequence is of marked interest to theories of spontaneous symmetry-breaking leading to morphogenesis, as well as to percolation theories. The present results extend the validity of conclusions drawn from our previous studies of other systems, by showing in one single case, system features that we have hitherto observed separately in different systems. Time-resolved experimental observations of the present type also bring kinetic and diffusional processes and solute-solvent interactions into the picture of cross-link percolation.
Gelation of deoxygenated solutions of sickle-cell human Hemoglobin (HbS) is of high theoretical interest and it has serious pathological consequences. For this reason HbS is probably the most studied protein capable of self-organization. This notwithstanding, the location in the T, c plane of the region of thermodynamic instability of solutions of deoxy-HbS (as bounded by the spinodal line and as distinct from the gelation region) has remained unknown, along with related values of Flory-Huggins enthalpies and entropies. In the present work this information is derived from experiments for the two cases of (deoxy) HbS and of human adult hemoglobin (HbA). Experiments also show critical exponents having mean-field values, which validates a Flory-Huggins approach. Altogether, the present work offers a quantitative understanding of the thermodynamic effects of the genetic HbA----HbS mutation and it opens the way to similar quantitative evaluations of contributions of pH, salts, cosolutes, and single peptides (even for nongelling hemoglobins), and of potential therapeutic strategies.
SYNOPSISTime-resolved studies of network self-organization from homogeneous solutions of the representative biostructural polymer agarose are presented. Solutions are temperature quenched and observed by several techniques. Consistent with previous suggestions by the authors, experiments at concentrations up to about 1.75% w/v provide direct kinetic evidence for the occurrence of at least two distinct processes, leading, in sequence, to selfassembly. These are as follows: ( a ) a liquid-liquid phase separation of the solution occurring via spinodal demixing and resulting in two sets of regions that have, respectively, higher and lower than average concentrations of random-coiled polymers; and ( b ) the subsequent 2 coils + double helix transition and accompanying cross-linking and gelation (due to branching of double helices ), occurring in the high-concentration regions. The size of the high-concentration regions depends upon agarose concentration and quenching temperature, and is in the range from a fraction of micrometers to a few micrometers, in agreement with earlier experiments. Bundling of the double-helical segments is known to follow self-assembly and can be considered as a third step (gel curing). This follows from the thermodynamic instability of the helical segments in the solvent, behaving as a system of rod-like particles connected by more or less flexible joints.The two processes leading in succession to self-assembly are discussed in terms of a phase diagram consistent with available data. Their time scales differ remarkably. A t the end of the first process, all polymers remain random coiled and freely drifting. Much later coil-helix transition is observed, always in coincidence with polymer cross-linking and gelation. The enhancement of concentration of random-coiled polymers in specific regions of the sol caused by spinodal demixing is thus a prerequisite for self-assembly of these biostructural gels in the concentration interval studied. Conceptually, concentration enhancements of this type can provide a new pathway for promotion of functional biomolecular interactions even at very low average concentrations. The mechanism will work identically if the region of instability is reached by varying the polymer concentration (e.g., by biosynthesis), rather than by temperature quenching.
The growing impact of protein aggregation pathologies, together with the current high need for extensive information on protein structures are focusing much interest on the physics underlying the nucleation and growth of protein aggregates and crystals. Sickle Cell Hemoglobin (HbS), a point-mutant form of normal human Hemoglobin (HbA), is the first recognized and best-studied case of pathologically aggregating protein. Here we reanalyze kinetic data on nucleation of deoxy-HbS aggregates by referring them to the (concentration-dependent) temperature T(s) characterizing the occurrence of the phase transition of liquid-liquid demixing (LLD) of the solution. In this way, and by appropriate scaling of kinetic data at different concentrations, so as to normalize their spans, the apparently disparate sets of data are seen to fall on a master curve. Expressing the master curve vs. the parameter epsilon = (T - T(s)) / T(s), familiar from phase transition theory, allows eliciting the role of anomalously large concentration fluctuations associated with the LLD phase transition and also allows decoupling quantitatively the role of such fluctuations from that of microscopic, inter-protein interactions leading to nucleation. Referring to epsilon shows how in a narrow temperature span, that is at T - T(s), nucleation kinetics can undergo orders-of-magnitude changes, unexpected in terms of ordinary chemical kinetics. The same is true for similarly small changes of other parameters (pH, salts, precipitants), capable of altering T(s) and consequently epsilon. This offers the rationale for understanding how apparently minor changes of parameters can dramatically affect protein aggregation and related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.