Non-autoclaved aerated concrete certain advantages are significantly lower production organization costs and technology energy intensity due to the lack of autoclave curing, the possibility of different scales industries foundation as well as monolithic construction applications. All of this allows to solve complex problems of various purposes buildings erection, heat and noise insulation. Portland cement consumption significant reduction and material properties management can be achieved through use of composite binders containing local natural and technogenic components selected on the basis of their genesis and properties. The applicability of heavy concrete and ceramic bricks processing wastes as well as such large-tonnage extraction of iron ore as sandstones granulation selection as mineral additive for non-autoclaved aerated concrete production as well as a number of accompanying issues of the of a high-quality pore space structures formation control are considered in the present article.
the basis of the modern market of cellular concrete is autoclaved gas silicate. At the same time, non-autoclaved aerated concrete is largely a more technological material, allowing the variation of its properties within a wide range, having a potentially wider field of application, less costly in the organization of production, which is of great importance for small and medium-sized businesses. The main problem of non-autoclaved aerated concrete is a higher cost of raw materials compared to silicate, and 20...30% lower strength performance. The proposed solution to this problem is the development of special composite binders with a limited content of clinker and mineral additives of various genetic types, taking into account the peculiarities of the two-stage structure formation of the material – gas porization and the formation of the microstructure of the stone. The article deals with some aspects of the interaction in the system “mineral additive – gypsum – by-products of the gas release reaction” in terms of the effect on the viscosity of the swelling mass and the strength of the stone at different times of hardening. Recommendations are given on the preferred compositions of composite binders and dosages of gypsum in the molding mixture when producing a material with an average density in the range of 500...700 kg/m3.
Non-autoclaved aerated concrete is the only viable alternative to gas silicate when organizing its manufacture on the basis of regional small and medium capacity production. This aims to improvement the competitive situation on the building materials market and optimizing the construction costs. The possibility of expanding the application field of this material due to the increase in strength characteristics while maintaining an unchanged average density is of special interest. The guarantee of proposed solutions economic and technical efficiency is the transition from traditional portland cement to composite binders based on it. The article discusses the quantity and composition of the mineral supplements feasibility to optimize the binder properties of the problem peculiarities to reduce consumption of cement and chemical modifiers that increase the rate of curing and totals of non-autoclaved aerated concrete investigated compatibility issues between components to eliminate their negative impact on the formation of porous structure of the final product.
One of the effective ways to reduce the material consumption of structures, to save all types of resources due to this, is the transition to porous constructional materials instead of traditional dense materials. In this regard, non-autoclaved gas concrete is of great interest. This material has a high manufacturability and has a good potential for improving the strength properties due to the replacement of traditional portland cement by special composite binders. Available publications confirm the effectiveness and prospects of this direction. An important disadvantage of such works is the fact that the binder indicators and the final cellular concrete characteristics are considered mainly independently. In our opinion, it is more correct to consider at least two structure-forming processes proceeding in parallel and sequentially at different scale levels. Micro level is a stone structure formation based on the composite binder; macro-level is a gas porization of cellular mass concrete. These processes have a great mutual influence on each other, and therefore this article attempts to observe the gassing products effect on the stone hardening based on composite binders, as well as the composite binder makeup on the viscosity change of the molding compound, as an important condition for the formation of high-quality less defective pore structure of cellular concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.